
Wednesday 18th July, 2007

Sequential Analysis of
Quantiles and Probability Distributions

by Replicated Simulations

A thesis submitted in partial fulfilment

of the requirements for the Degree of

Doctor of Philosophy in Computer Science

in the University of Canterbury by

Mirko Eickhoff

Examining Committee and Supervisors

Associate Professor Mark Bebbington (Examiner)
(Massey University, Information Sciences & Technology)

Professor Peter W. Glynn (Examiner)
(Stanford University, Management Science & Engineering)

Professor Krzysztof Pawlikowski (Examiner & Supervisor)
(University of Canterbury, Computer Science & Software Engineering)

Associate Professor Don McNickle (Supervisor)
(University of Canterbury, Management)





To Nadine





Abstract

Discrete event simulation is well known to be a powerful approach to investigate

behaviour of complex dynamic stochastic systems, especially when the system is

analytically not tractable. The estimation of mean values has traditionally been

the main goal of simulation output analysis, even though it provides limited in-

formation about the analysed system’s performance. Because of its complexity,

quantile analysis is not as frequently applied, despite its ability to provide much

deeper insights into the system of interest. A set of quantiles can be used to ap-

proximate a cumulative distribution function, providing fuller information about

a given performance characteristic of the simulated system.

This thesis employs the distributed computing power of multiple computers by

proposing new methods for sequential and automated analysis of quantile-based

performance measures of such dynamic systems. These new methods estimate

steady state quantiles based on replicating simulations on clusters of workstations

as simulation engines. A general contribution to the problem of the length of the

initial transient is made by considering steady state in terms of the underlying

probability distribution. Our research focuses on sequential and automated meth-

ods to guarantee a satisfactory level of confidence of the final results. The cor-

rectness of the proposed methods has been exhaustively studied by means of se-

quential coverage analysis. Quantile estimates are used to investigate underlying

probability distributions. We demonstrate that synchronous replications greatly

assist this kind of analysis.
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fX(x) PDF of X
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x observation of X

{Xi}pi=1 random sample or stochastic process

{xi}pi=1 realisation of {Xi}pi=1

{Yi}pi=1 sorted sample of {Xi}pi=1, where Y1 ≤ . . . ≤ Yp

xj,i ith observation of jth replication

E [X] expected value (1st moment)

Var [X] variance (2nd central moment)

Cov [X0, X1] covariance

Skew [X] skewness (3rd standardised moment)

Kurt [X] kurtosis (4th standardised moment)

U (x; a, b) uniform distribution with bounds a and b

Exp (x;m−1) exponential distribution with mean m

N (x;m, v) normal distribution with mean m and variance v

Fibk kth Fibonacci number
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KSk k-sample Kolmogorov-Smirnov test statistic

ADk k-sample Anderson-Darling test statistic

x̄, x̂, X̂ average, estimate, estimator

bxc largest integer equal or smaller than x

dxe smallest integer equal or greater than x

n simulation horizon

p number of replications

i observation index

j replication index

l, lF , lE, lV truncation point

r ratio

q probability

xq position of q-quantile

λ arrival rate

µ service rate

ρ traffic load

1− α confidence level

ε threshold

∆ interval, difference, halfwidth

{Ψi}∞i=1 independent Gaussian white noise process

{Υ(k)
i }∞i=1 geometrical ARMA(k, k) process

Ni queue length at arrival (resp. departure) of ith customer

Ri response time of ith customer

This is a list of commonly used notations and symbols of this thesis. Exceptions

of these notations cannot be avoided and are stated in the context of the associated

section.



Acknowledgement

I wish to thank my supervisors, Professor Krzysztof Pawlikowski and Associa-

tive Professor Don McNickle, for helpful advice, patient guidance, enlightening

discussions and valuable feedback on drafts of my thesis. I am grateful for the

support of all members of the Simulation Research Team at various stages of my

work. Many thanks to all people of the Computer Science & Software Engineer-

ing Department for providing best working conditions and computer facilities.

Finally, I wish to thank my family and friends who contributed to this thesis

by supportive talks, encouragement, giving me direction as well as distraction and

making New Zealand my second home.

This research was supported by a targeted doctoral scholarship granted by the

University of Canterbury and by travel grants for participation at international con-

ferences granted by the Computer Science & Software Engineering Department

and the conference chair of the MMB 2006.

xxii



Chapter 1

Introduction and Motivation

Stochastic discrete event simulation is well known to be a powerful approach to

investigate dynamic behaviour of complex systems, especially when the system is

analytically not tractable. Nowadays much research work in this area is focused

on sequential and automated methods of output analysis to guarantee a satisfactory

level of confidence of the final results.

The estimation of mean values has traditionally been the main goal of simula-

tion output analysis. Mean value estimation enables the analyst to answer ques-

tions of the kind: What is the average delay of a data packet passing a server?

What is the average filling of a storage? What is the average utilisation of a worker

at an assembly line. However, in many situations mean value analysis is not suf-

ficient. The estimation of quantiles is known to provide the analyst with a deeper

insight into the system’s behaviour. Quantile estimation enables the analyst to

answer questions like: What is the probability of a file transfer in the Internet be-

ing delayed for more than x seconds? What is the probability of overloading a

machine with too many jobs? What is the probability of a storage being empty?

The complexity of quantile analysis is higher than the complexity of mean

value analysis due to higher complexity of estimators. However, the main prob-

lem facing quantile estimation is the same as that of mean value analysis: output

1
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streams from discrete event simulation are autocorrelated and observations are

not identically distributed. The ultimate goal of estimating the steady state dis-

tribution is, therefore, not straightforward. The use of independent replications

performed in parallel within one simulation experiment enables the investigation

of effective statistical methods of quantile analysis and offers a new paradigm for

studying performance of complex systems.

The aim of this doctoral thesis is to propose new methods for automated and

sequential analysis of performance measures of such dynamic systems and to in-

vestigate the underlying probability distributions based on quantile analysis. The

results are calculated with a certain confidence level given by a sequential and

automated approach within the scenario of independent replications. Estimation

of quantiles in steady state requires to define the onset of steady state conditions

for such analysis. One of the main results of this thesis is a novel technique for

determining the length of the initial transient phase by detecting the convergence

of output processes to their steady state probability distribution. These novel so-

lutions will be discussed in more detail in the following sections.

1.1 Simulation as a Statistical Experiment

Perhaps the most widely used paradigm of system analysis and optimisation is

stochastic discrete event simulation. Compared to other paradigms its main ad-

vantage is that it can be used for studying analytically intractable systems, as long

as procedures describing their behaviour are known. Therefore, the areas of ap-

plication of simulation is vast, e.g. telecommunication networks, manufacturing

systems, logistic networks and many more. Every stochastic simulation is a sta-

tistical experiment due to the random property of the simulation inputs. Thus,

the simulation results can be considered as estimates of true characteristics of the

model.
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Credibility of simulation depends mainly on two factors. First, the simulation

model must be able to mimic the wanted behaviour. Verification and validation

(see [85-LK00]) of models is needed. To simplify the creation of a valid model

many simulation software packages are specialised to certain application areas.

For example [18-BTD06] and [83-KCC05] discuss credibility of simulation for

certain kinds of networks and show common pitfalls. However, we focus on the

second factor of credibility and follow the principles of [101-PJL02]. In this arti-

cle a survey of recent publications showed that surprisingly, up to three quarters

of papers reporting simulation-based results did not acknowledge the random na-

ture of output data generated by stochastic simulation. The output of simulations

must be processed in a statistically valid way to be useful to the decision maker.

Estimates of true characteristics of a simulation model must be given with a con-

trolled statistical error. Bias of estimators should be controlled, or even elimi-

nated. Unfortunately, much commercial software focuses on secondary properties

of simulators only, for example 3D-animation. Neglecting the need to produce

final results with small accurately estimated statistical errors can lead to very in-

accurate results and to a loss of simulation’s credibility in general.

For this reason we use sequential and automated simulation analysis and fol-

low the paradigm of [99-Paw90]. For an introduction to sequential procedures see

[85-LK00]. In sequential analysis the simulation runs are guided by the process

of analysis. Their length is sequentially increased until the statistical error of the

measure of interest is small enough. This is defined by a sequential stopping cri-

teria. This implies that in sequential analysis the simulation run length is not fixed

before the simulation experiment. Sequential analysis is the only way to obtain es-

timates with controlled statistical error. Confidence intervals of estimates should

be calculated on a reasonably high confidence level to provide meaningful results.

Additionally, the width of confidence intervals should be small. This means that

e.g. the relative width is smaller than a predefined small threshold. This can be
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guaranteed only if output analysis is performed during to the simulation run. The

simulation experiment is continued until the predefined threshold is reached. In

automated analysis the interaction with the user should be minimised. Setting

parameters like confidence levels or acceptably relative errors should not be an

issue and could be even avoided by choosing standard values. Additionally, the

user should not be obliged to set parameters which require deep understanding

of simulation models, like e.g. correlation structures or steady state characteris-

tics. Our aim is to provide sequential and automated methods for output analysis

of stochastic discrete event simulation. The software, which is developed for the

purpose of this thesis, is designed to be part of a universal simulation controller,

like Akaroa2 ([47-EPM99]), that supports data collection, sequential analysis and

stopping simulation when results become satisfactorily accurate. This kind of

simulation output data analysis is online, because data is analytically processed as

soon as it is observed.

1.2 Focus of Output Analysis

In analysis of simulation output data many different performance measures could

be of interest, such as the different central moments, gradients, probabilities, rare

events or quantiles. Mean value analysis is the most common approach in simula-

tion. Mean values describe average system behaviour. Statistical errors in mean

value analysis can be done by estimating confidence intervals on basis of the vari-

ance of the mean. This includes batch means or spectral analysis, which have

been discussed in [99-Paw90]. Variance analysis can also be done to determine

the variance of the underlying output process itself. Gradient estimation (see e.g.

[57-Gly90]) is done to find optimal settings of a model. Here, not only a given

model is of interest but the optimisation of this model. To analyse the behaviour

of a system in extreme situations, rare event simulation (see e.g [120-Sha95] or
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[132-VAVA94]) is applied. This simulation approach targets at the estimation of

measures which are based on events with very low probability. All in all we can

see that methods are available to estimate measures of average and extreme sys-

tem behaviour. However, a deeper insight into the systems behaviour can be given

by estimating the full spectrum of possible values of a measure and their proba-

bility of occurrence, i.e. by estimating the probability distribution of the measure

of interest.

An impression of a probability distribution can be obtained by a set of suffi-

ciently many, suitably spaced quantiles. Thus, quantile estimation of the simula-

tion output process is an important task and will be the main focus in later chap-

ters. We will review basic mathematics of quantile estimation in Section 2.2 fol-

lowed by a survey in Section 2.4 of the current situation of quantile estimation in

simulation. We will derive quantile estimation methods for their time-dependent,

as well as for their steady state behaviour. The application areas of quantile esti-

mation are as vast as the application areas of simulation itself. Inventory systems,

queueing systems, computer systems, real-time control applications, financial in-

dustry, Internet and many more are explicitly mentioned in literature as areas of

applications (see e.g. [74-Ige76], [76-JC85], [48-FMG+01] or [77-JFX03]). An

application in the area of peer-to-peer file sharing systems is discussed in Sec-

tion 4.4.4 and shows the importance of the new methods in a practical example.

Throughout all chapters, the use of new derived methods will be demonstrated on

examples. In addition, important statistical properties will be proven analytically.

Our focus are methods for automated simulation. We show that the proposed

methods of this thesis are robust and applicable for all kinds of output data in gen-

eral. However, in the description of these methods we will rely on assumptions,

which are done to show statistical properties. If these assumptions are violated,

the methods do not necessarily fail; it is more likely that the results are not as

good as one would expect for valid assumptions. Limits of the new methods are
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given by the assumed properties of underlying probability distributions. Namely,

we assume continuous distribution functions so that the usual definition of quan-

tiles (see Equation (2.12)) is valid. This will effect methods of Chapter 4 and

Chapter 6. Assuming continuous distribution functions is also beneficial when

comparing random samples: the usual statistics of homogeneity tests (Chapter 5)

are applicable. Furthermore, all methods are tested for well behaved distributions

only, since we assume that lower moments of the underlying distribution should

be finite. If lower moments are not finite, estimating the probability distribution is

questionable anyway.
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1.3 Scientific Contribution

The following list is a summary of the main scientific contributions of this thesis.

• Analysis of the time evolution of a stochastic output process based on a

set of quantile estimates: Chapter 4, which is published in [40-EMP05a],

[42-EMP06]. Application in analysis of time dependent file popularity in

Peer-to-Peer networks, which is published in [17-BEPS07].

• Subdividing the output process in a initial transient and steady state phase

in terms of a stable probability distribution: Chapter 5, which is published

in [41-EMP05b], [38-Eic06] and [43-EMP07a].

• Approximation of the steady state probability distribution based on a set

of quantile estimates: Chapter 6, which is published in [38-Eic06] and

[44-EMP07b].

This doctoral thesis is supported by the following list of refereed conference

contributions and journal articles.
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2005 [40-EMP05a] Depiction of Transient Performance Measures

using Quantile Estimation (ECMS)

[41-EMP05b] Efficient Truncation Point Estimation for

Arbitrary Performance Measures (ISC)

2006 [42-EMP06] Analysis of the Time Evolution of Quantiles

in Simulation (IJSSST)

[38-Eic06] Steady State Quantile Estimation (MMB)

2007 [17-BEPS07] Modeling File Popularity in Peer-to-Peer

File Sharing Systems (ASMATA)

[43-EMP07a] A Method for Detecting the Initial Transient

in Steady State Simulation of Arbitrary

Performance Measures (VALUETOOLS)

[44-EMP07b] Using Parallel Replications for Sequential

Estimation of Multiple Steady State

Quantiles (VALUETOOLS)

Table 1.1: List of refereed conference contributions and journal articles.
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1.4 Structure of Thesis

The outline of this thesis is as follows. In the next chapter we will give an overview

of the different performance measures of simulation. We will focus especially on

quantiles of the simulation output process. This is followed by the description of

a simulation scenario where independent replications are performed in parallel.

This will provide a speed up in data collection on the one hand. On the other

hand, we will explore the use of replications to introduce new estimators. In

Chapter 4 we will calculate a set of quantiles and estimate their time dependent

evolution. The aim is to provide information about the dynamics of a model. A

different point of view is considered in Chapter 5. Here, we describe methods that

distinguish between the transient and the steady state behaviour of the simulation

output process. Homogeneity test will be very important for this task. They enable

us to find steady state, so that identically distributed output data can be assumed.

These methods are important for subsequent analysis of steady state measures. In

Chapter 6 we discuss quantile estimation during steady state. A set of quantiles is

calculated on basis of multiple parallel replications. This results in an estimate of

the steady state probability distribution.



Chapter 2

Performance Measures in

Simulation

In this section we comment on output data analysis in simulation. Because there

are many different kinds of performance measure we give an overview and in-

troduce necessary definitions in Section 2.1. We describe and distinguish proba-

bilistic characteristics of a model, estimators and the output processes themselves.

Quantiles are special characteristics, which will be discussed in general terms in

Section 2.2. The case of a sample with independent and identically distributed

observations is discussed. Point and interval estimators for quantiles are derived

on basis of order statistics. In Section 2.3 a selection routine for a set of quantiles

is discussed. The special role of quantile estimation in simulation output data is

discussed in Section 2.4. Here, the data cannot be assumed to be independent

and identically distributed. We survey simulation literature regarding this topic.

In general we have to distinguish between the estimation of one, or several quan-

tiles as well as between finite horizon or steady state simulation. Two selected

approaches are reviewed at the end of this section.

10
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2.1 Output Process and Estimation

In stochastic simulation the analyst has to deal with a lot of different performance

measures which are all governed by certain probability distributions. All these

measures are dependent on each other, but there are different analytical layers.

We consider simulation models of systems whose states are probabilistic. So

are the observations which are taken from such simulations. In a simulation exper-

iment the stream of observations forms an output process that commonly shows

random and time dependent behaviour. The estimates of characteristics of this

output process are probabilistic, too. This will be discussed in this section.

For more details and explanations of the terminology which is used in the

following sections, we refer to standard simulation literature such as [51-Fis01],

[85-LK00], [23-CL99], [10-Ban98], [11-BCN96], [75-Jai91] and [21-BFS87] or

textbooks such as [121-Sha75], [49-Fis73], [95-Mih72], [46-ES70], [65-Gor69]

and [130-Toc63].

2.1.1 Characteristics of Models

In general, a model is an abstract representation of a system for the purpose of

studying this system. The model describes a selection of entities, attributes, ac-

tivities and events of this system, which are important for the specified aim of the

study. In stochastic discrete event simulation a model can be implemented in any

kind of computer programming language which is appropriate.

The model is fully described by all its state variables. For example such quan-

tities as W =“number of waiting customers in a queue”, L =“water level of a

pool”, C =“condition of a teller” or T =“activity of a printer” are examples for

states and can be described by random variables, which will be denoted with up-

percase letters. As we can see already of this short list of examples, there are

many different types of state variables:
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• W is a discrete random variable greater than zero;

• L is a continuous random variable greater than zero;

• C is a binary random variable, e.g. busy or idle;

• T is a discrete random variable, e.g. “printing”, “receiving data” and “wait-

ing”.

Realisations of random variables will be denoted by corresponding lowercase let-

ters, e.g. W = {w1, w2, . . .} or T = {t1, t2, . . .}.

In discrete event simulation a model changes its states instantaneously when-

ever some event occurs. For the purpose of analysis observations are collected

during the simulation. This may happen at the occurrence of an event. An ob-

servation can be the value of a state variable as well as a measure of its property.

Thus, there are many different kinds of observations possible, as they can inform

about, for example, response time, waiting time, service time, turnaround time,

interarrival time, queue length, filling of a storage, utilisation, arrival rate, exit

rate, etc. A simulation is able to provide the analyst with an unbounded amount

of observations. The problem is how to use these data in a decision process asso-

ciated with performance evaluation of modern computer dynamic systems. These

observations have to be statistically processed to enable precise evaluation of the

systems concerned.

2.1.2 Characteristics of Output Processes

As we have mentioned in the previous section, a simulation can report many dif-

ferent kinds of observations. Of course, different kinds of observations should not

be mixed with each other, but they should be analysed separately. This is why

we can focus on only one kind of observation per simulation in the following dis-

cussions, without loss of generality. However, in this way correlations between
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different measures might be overlooked. On the one hand correlations between

different performance measure might provide information about the system of

analysis. On the other hand this kind of correlation is an additional difficulty in

output analysis, as discussed in [85-LK00] combined confidence intervals have to

be calculated. This might be difficult if many different performance measures are

analysed and is a reason for looking at single performance measures in isolation,

independently one from the other.

Any kind of observation can be described by a random variable Xi with ob-

servation index i. Instead of associating an event with its time of occurrence,

an event can be associated with its number of occurrences so far: the observation

index i. In the case of time-continuous measures, such as queue length, instead

of recording data continuously in time, measurements should be done at specific

time instances, characteristics for a given process. For example, queue length

could be measured at just after arrival of a new customer to a given queue, or just

after departure of a customer from a given queue. All observations from a simu-

lation are given by the sequence {Xi}ni=1 and determine the output process, where

Xi is a component of this process. The output process, as a sequence of random

variables, forms a stochastic process. In general, however, the components of the

output process of a simulation is neither independent nor identically distributed.

Because i ∈ N the sequence {Xi}ni=1 is a discrete time stochastic process that can

be continuous or discrete valued. n ∈ N can be a fixed value, e.g. if a specified

number of observations is collected. In contrast to this, note that in following

chapters n is sometimes used to describe a temporary simulation horizon. This

will be mentioned explicitly or is obvious in the current context. In general, the

simulation horizon n is not bounded. To mention this explicitly we will often

describe the output process as an infinite sequence {Xi}∞i=1.

The cumulative distribution function (CDF) of Xi is given by

FXi
(x) = Pr [Xi ≤ x] , (2.1)
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which is the marginal (or first order) distribution of the process {Xi}∞i=1. Distri-

butions of higher order are given by the convolution of marginal distributions at

different i. In this case, the values i and x of Equation (2.1) are replaced by vec-

tors; for details see e.g. [131-Tri02]. Possibly interesting characteristics of Xi are

for example

• the expected value E [Xi] (1st moment),

• the variance Var [Xi] (2nd central moment),

• the skewness Skew [Xi] (3rd standardised moment),

• the kurtosis Kurt [Xi] (4th standardised moment),

• as well as for example the mode,

• the median, quartiles, deciles, percentiles, or

• other quantiles of FXi
(x).

By far the majority of simulation literature focuses on the estimation of the

expected value E [Xi]. Using estimators of mean values, the results of the simu-

lation can answer questions about the average system state, such as: How many

customers are there on average in the queue? However, the estimation of other

characteristics could be desirable for the analyst. Especially the estimation of

quantiles can additionally answer questions like: What is the probability of more

than k customers in the queue? Questions of this kind are often of more interest

to the decision-maker. The complexity of quantile estimation is higher than the

complexity of mean value estimation, but the estimation of quantiles can give full

insight into the system of interest. This is true especially if several quantiles are

estimated. A set of several quantiles can be used to approximate FXi
(x).
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2.1.3 Characteristics of Estimators

Let Θ̂ be an estimator for unknown Θ based on a collection of observations, where

for example Θ = E [X∞] or Θ = F−1
X∞

(0.95). The estimator Θ̂ is governed by the

CDF FΘ̂(x). Here, characteristics of Θ̂ are important to evaluate the performance

and quality of the estimator.

E
[
Θ̂
]

is important for the definition of the bias:

B
(
Θ̂
)

= E
[
Θ̂
]
−Θ. (2.2)

Θ̂ is an unbiased estimate only if B
(
Θ̂
)

= 0. Whereas Var
[
Θ̂
]

is important for

the definition of the mean squared error:

MSE
(
Θ̂
)

= E

[(
Θ̂−Θ

)2
]

= Var
[
Θ̂
]

+
(
B
(
Θ̂
))2

. (2.3)

Quantiles of FΘ̂(x) are used to determine a confidence interval for unknown Θ.

2.1.4 Evolution in Time versus Steady State

The primary interest of the analyst are characteristics of the output process {Xi}∞i=1.

The ultimate goal of this thesis is to develop techniques for describing the output

process by its marginal distributions FXi
(x), where i < ∞, and especially by

FX∞(x), if it exists. This is not a trivial task, which is maybe the reason why most

methods of simulation output analysis focus on E [Xi].

We have to distinguish between two cases. For the first case let us assume

that the simulation model is initialised at a particular state at the beginning of

the simulation experiment. The analyst might be interested in how the simulated

process evolves over time, e.g. recovers from an exceptional event. In this case

a fixed simulation horizon is appropriate and we are dealing with finite horizon

simulation. The analyst may be interested in quantiles of FXi
(x) evolving over

time. A method for this task will be described in Chapter 4.
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In the second case the analyst is more interested in the long run behaviour of a

simulated system. This usually assumes that there is a common distribution FX(x)

for all Xi with i ≥ l, which is called the steady state behaviour. Observation

indexes with i < l are usually discarded to limit the influence of an arbitrary

initial state. In this case the time evolution is not of interest because in steady

state FXi
(x) is not changing over time. Here, the ultimate goal is to approximate

FX(x). This will be discussed in Chapter 5 and Chapter 6.

2.2 Quantiles in IID samples

In the previous section we pointed out that in general the estimation of quan-

tiles provides a deeper insight into the behaviour of the system of interest than

the estimation of mean values. In this section we would like to discuss the ba-

sic mathematics in quantile estimation and introduce the necessary denotation.

Our discussion of order statistics and quantiles in this section is mainly based on

[34-Dav70], [6-AB89] and [29-Con99].

2.2.1 Order Statistics

Let X1, X2, . . . , Xp be a set of independent and identically distributed random

variables, i.e.

Pr [∀i : Xi ≤ x] =
∏

i

Pr [Xi ≤ x] (2.4)

and

∀i : FXi
(x) = FX(x), (2.5)

respectively. Then, FX(x) is the common CDF of all Xi and can be estimated by

F̂X(x) =
1

p

p∑
i=1

ζ(x−Xi), (2.6)
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where

ζ(∆) =

 1, if ∆ ≥ 0,

0, else.
(2.7)

F̂X(x) is called the empirical CDF. The value of F̂X(x) is determined by counting

how many observations of {Xi}pj=1 are smaller than x. If k values of F̂X(x) are

of interest, the use of Equation (2.6) leads to a time complexity of O (kp), since a

linear search has to be done k times in a sample of size p. This is inefficient. In

this situation it is advisable to base the estimation on a sorted random sample.

Let {Yi}pi=1 be the ordered sequence of {Xi}pi=1, i.e. Y1 ≤ Y2 ≤ . . . ≤ Yp.

Then yi is called the ith order statistic and Yi is the associated random variable.

Because Yi ≤ Yi+1, order statistic are dependent and not identically distributed.

The CDF of the extreme Yp is given by

FYp(x) = Pr [∀i : Xi ≤ x] (2.8)

= (FX(x))p .

Similarly, the CDF of the extreme Y1 is given by

FY1(x) = 1− Pr [∀i : Xi > x] (2.9)

= 1− (1− FX(x))p .

The general case is given by the binomial distribution:

FYi
(x) =

p∑
j=i

(
p

j

)
(FX(x))j(1− FX(x))p−j , (2.10)

see e.g. [129-Tho36]. This equation allows the construction of distribution free

confidence intervals for quantiles. This will be discussed in the following section.

Equation (2.10) is used in [127-Str04] to calculate FΘ̂(Θ), where Θ̂ is a quan-

tile estimator and Θ is the expected value. FΘ̂(Θ) is needed to construct a spe-

cial case of min-max confidence intervals for quantiles. This approach is based
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on multiple independent replications. Despite of this, Equation (2.4) and Equa-

tion (2.5) are still assumed for each replication, and if necessary, the data of each

replication has to be transformed into an independent and identically distributed

set of data. The advantage of independence of data of different replications is

used only for the construction of the min-max confidence interval. The traditional

way of confidence interval construction for quantiles will be discussed in the next

section.

Using sorted random samples, Equation (2.6) can be changed to

F̂X(x) =
1

p
min(i|x ≥ Yi) (2.11)

with 1 ≤ i ≤ p and F̂X(x) = 0 for x < Y1. The calculation of k points of F̂X(x)

from Equation (2.11) can be done in O (p log p), because the data has to be sorted

only once. Sorting can be done in O (p log p). Then, all k points can be calculated

in sorted order by a single linear search in the sorted sample of size p. This needs

a run time of O (max(k, p)) and usually k < p holds. The overall run time is,

therefore, O (p) + O (p log p) = O (p log p). The range of F̂X(x) is given by the

distance Yp−Y1 of the two extremes. The error F̂X(x)−FX(x) is decreasing with

increasing p, this will become clear in the discussions about quantiles of FX(x) in

the next section.

2.2.2 Population and Sample Quantiles

Let xq define a value in the range of X , so that FX(xq) = q. Therefore,

xq = F−1
X (q) = inf{x|FX(x) ≥ q} (2.12)

is the population quantile of order q, if FX(x) is continuous. If FX(x) is non-

continuous this definition is ambiguous. The random interval [Yl, Yu] is a distribu-
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tion-free confidence interval for a population quantile, where

Pr [Yl ≤ xq ≤ Yu] = Pr [Yl ≤ xq]− Pr [Yu < xq] (2.13)

≥
u−1∑
j=l

(
p

j

)
qj(1− q)p−j .

This equation can be derived of Equation (2.10) with FX(xq) = q, therefore, it

is independent of the general form of FX(x). This property will be used exten-

sively in later chapters, because it enables establishing a confidence interval for

an unknown distribution.

The sample quantile x̂q aims at estimating the population quantile xq, when a

certain value of q is specified. Common estimators are

x̂q = ybpq+1c or x̂q = ydpqe, (2.14)

where bpq + 1c is the integer part of pq + 1 and dpqe is the smallest integer equal

or greater than pq. However, many other estimators are known. For example

the weighted sum of two neighbouring order statistics is another common esti-

mator. In literature regarding simulation output analysis this is discussed e.g. in

[140-WS95].

In later chapters we will extend beyond calculating xq for a specified value

of q. We rather try to estimate the whole CDF of a given measure on basis of

several quantiles, assuming to be free to decide which values of q are appropri-

ate and choosing them on the basis of the size p of a given sample. A sorted

random sample naturally provides order statistics. Therefore, we are looking for

the population quantile xq that is represented by E [Yi]. q = FX(xq) has to be

estimated and xq is given by yi. We can see the dependence of q on the form of

FX(x), thus, a general estimator of q for an unknown distribution is expected to

be asymptotically (large sample size) unbiased only. In [33-DJ54] properties of

the approximation

(unknown case) E [Yi] ≈ F−1
X

(
i

p+ 1

)
(2.15)
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are discussed. The error decreases with growing sample size p and depends on

derivatives of FX(x) as well as on the location of the quantile. Equation (2.15)

suggests to estimate q by q̂i = i
p+1

. This estimate is asymptotically unbiased for

any form of FX(x) and it is the best for the uniform case. If the form of FX(x)

is given specialised estimators are known. In [34-Dav70] is shown that for the

exponential case

(exponential case) E [Yi] ≈ F−1
X

(
i

p+ 1
2

)
(2.16)

has better small sample properties than Equation (2.15). In this case q̂i = i
p+ 1

2

is a

good estimate of q. For the normal case the small sample properties of

(normal case) E [Yi] ≈ F−1
X

(
i− 1

2

p

)
(2.17)

are better than of Equation (2.15). Here, q̂i =
i− 1

2

p
is a good estimate of q. How-

ever, a general solution for the unknown case is given by Equation (2.15) and

we can follow that FX(Yi) ≈ q̂i, if p is sufficiently large. The unknown case is

our main focus. In later chapters Equation (2.15) will be used to provide quan-

tile estimators for the general case, i.e. for an unknown form of FX(x). If p is

not sufficiently large the use of Equation (2.16) or Equation (2.17) will be neces-

sary to obtain valid estimates. The large sample behaviour of estimators given

in Equation (2.15), Equation (2.16) and Equation (2.17) is identical, so, they are

asymptotically identical.

The difference between estimators like Equation (2.14) and estimators like

Equation (2.15) is demonstrated by the following two cases:

(A) observation→ rank→ probability: Equation (2.15)

(B) observation← rank← probability: Equation (2.14)

In (A) the order statistic yi (resp. observation) determines the rank i, then, the

probabilityFX(yi) is given by a simple sample proportion i
p+1

, see Equation (2.15).
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In this case FX(x) is computed for a given x. In (B) a probability q is given, e.g.

specified by the analyst. The rank i is determined by bpq + 1c or dpqe, see Equa-

tion (2.14). The final estimate is the order statistic yi at the determined rank i. In

this case F−1
X (q) is computed for a given q. Case (B) applies the operators b·c or

d·e, which introduce additional bias due to discontinuous sample equations. In this

research work observations are collected of simulation runs and their probabilities

need to be calculated. Thus, case (A) is of higher interest and the estimators of

Equation (2.15), Equation (2.16) and Equation (2.17) are applied, exclusively. We

will compute FX(x) at a finite set of points x1, · · · , xp. For this research work

estimators like Equation (2.14) are not of further interest. This is contrary and

novel compared to other methods of quantile analysis for simulation output data,

see Section 2.4, because in other methods the analyst has to specify a certain q-

quantile, or even a set of q-quantiles, for estimation.

2.2.3 Dependence of Sample Quantiles

Due to the relation Yi ≤ Yi+1 order statistics form a dependent sequence. Let xq1

and xq2 be two quantiles of FX(x). The joint distribution of Yi and Yj , with i < j

and xq1 < xq2 , is

FYiYj
(xq1 , xq2) = Pr [Yi ≤ xq1 , Yj ≤ xq2 ] (2.18)

=

p∑
r=i

p−r∑
s=max(0,j−r)

p!

r!s!(p− r − s)!
qr
1(q2 − q1)s(1− q2)p−r−s,

see [34-Dav70]. Therefore, two sample quantiles, which are estimated from the

same sample, are dependent on each other.

The dependence of two quantiles taken from the same sample will be impor-

tant in Chapter 4 and Chapter 6. To avoid quantile estimates that are located too

close to each other and are, therefore, highly correlated we will introduce a con-

cept of quantiles with disjoint confidence intervals in Section 2.3.
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2.3 Disjoint Confidence Intervals

Two quantile estimates are correlated if the estimation is based on the same ran-

dom sample. As the discussion of the previous section shows, the exact correla-

tion depends on the underlying probability distribution. In [80-Ken40] the Gaus-

sian approximation of distributions of quantiles is discussed. Using the Gaus-

sian approximation for large samples Var [x̂q] = q(1− q)/p and Cov [x̂q1 , x̂q2 ] =

q1(1− q2)/n can be derived. These results can be used to calculate the asymptotic

correlation

Cov [x̂q1 , x̂q2 ]√
Var [x̂q1 ] Var [x̂q2 ]

=
q1(1− q2)√

q1(1− q1)q2(1− q2)
(2.19)

=

√
q1(1− q2)
(1− q1)q2

,

which is valid for large samples and 0 < q1 < q2 < 1. One can see, that for a fixed

value of q1 the asymptotic correlation tends to 0 for q2 close to 1. On the other

hand, for q2 close to q1 the asymptotic correlation tends to 1. This shows, that

a mechanism is needed to control the correlation of two neighbouring quantile

estimates. They should not be located too close to each other, because of high

correlation. However, they should not be located too far away from each other,

because then the estimation is too wasteful. One possible mechanism, that is

not based on the Gaussian approximation and is also valid for small samples, is

discussed next.

The discussion about disjoint confidence intervals of this section is partly pub-

lished in [44-EMP07b]. Equation (2.13) allows to construct a confidence interval

for a population quantile xq based on two order statistics Yl and Yu. The prob-

ability Pr [Yl ≤ xq ≤ Yu] can be calculated for arbitrary ranks 1 ≤ l ≤ u ≤ p,

where p is the sample size and l and u define ranks representing lower and upper

bounds. It is not necessary but could be desirable that xq splits the confidence

interval [Yl, Yu] into two parts, so that half of the probability mass is in both parts.
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Definition Let Yc be an asymptotically unbiased estimate of xq, i.e. E [Yc] ≈

F−1
X (q) = xq. The confidence interval Pr [Yl ≤ xq ≤ Yu] ≥ 1− α is balanced if

Pr [Yl ≤ xq ≤ Yc] ≥
1− α

2
and (2.20)

Pr [Yc ≤ xq ≤ Yu] ≥
1− α

2

hold.

This definition follows the concept of mid-p confidence intervals, see e.g.

[16-BA95]. Other common approaches are to construct a confidence interval that

has minimum width or that follows xq − Yl = Yu − xq. However, we construct

the confidence interval on basis of Equation (2.20) because in the balanced case u

and l can be calculated separately of each other.

Confidence intervals are always calculated for the deterministic value xq. The

“true” xq is unknown, we estimate it by Yc. A balanced confidence interval

around Yc can be calculated by determining q by Equation (2.15) in the general

case, or by Equation (2.16) or Equation (2.17) in the exponential and normal case.

Once q is determined we can initialise l = u = c and calculate Pr [Yl ≤ xq ≤ Yc]

and Pr [Yc ≤ xq ≤ Yu] by Equation (2.13) separately. l is decreased and u is in-

creased until both conditions of Equation (2.20) are valid.

Let Pr [Yl1 ≤ xq1 ≤ Yu1 ] ≥ 1 − α and Pr [Yl2 ≤ xq2 ≤ Yu2 ] ≥ 1 − α be two

balanced confidence intervals. As discussed, estimates of xq1 and xq2 are depen-

dent, see Equation (2.18). However, by choosing disjoint confidence intervals, i.e.

u1 ≤ l2, we can ensure that at most α
2

of the probability mass of both distributions

overlap. If α is sufficiently small, e.g. α ≤ 0.1, high correlation between estimates

of xq1 and xq2 can be avoided, compare with Equation (2.18).

To split the ordered sequence {Yi}pi=1 into a maximum number of disjoint

balanced confidence intervals an algorithmic approach is needed. A flowchart of

this algorithm is depicted in Figure 2.1 for xq, where q > 0.5. A flowchart for the
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Figure 2.1: Flowchart of splitting {Yi}pi=1 into a maximum number of disjoint

balanced confidence intervals at confidence level 1− α.

case q < 0.5 can be derived by substituting all components marked by a “*” with

(if li−1 ≥ ui), (ci = li−1), (ci = ci − 1) and (if ci ≥ 1), respectively.

Let us assume that the size p of the random sample is odd and we start by

selecting Yc1 with c1 = p+1
2

. The assumption of an odd p assures that Yc1 is an

unbiased estimate of the median x0.5 and all our further results are symmetric with

centre x0.5. The balanced confidence interval [Yl1 , Yu1 ] around Yc1 at confidence

level 1− α can now be calculated as described above. We start with l1 = u1 = c1

and decrease l1 and increase u1 until Equation (2.20) holds. If this is successful

the first confidence interval [Yl1 , Yu1 ] is given. To find a second confidence interval
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[Yl2 , Yu2 ] with u1 ≤ l2, we have to find the order statistic Yc2 that estimates xq2 so

that Pr [Yl2 ≤ xq2 ≤ Yc2 ] ≥ 1−α
2

. We start this search with c2 = u1. Now, q2 can

be determined by Equation (2.15) in the general case, or by Equation (2.16) or

Equation (2.17) for the exponential or normal case. These equations describe how

to find the unknown position of the quantile that is estimated by the given order

statistic. After q2 is estimated, the belonging Yl2 can be calculated. If u1 > l2, this

choice of c2 should be rejected and c2 = u1 + 1, and so on, should be tested. The

search can be stopped if c2 ≤ p is violated, no more disjoint confidence intervals

fit in the unprocessed area. If u1 ≤ l2 holds, a valid choice of c2 is found and

additionally u2 must be tested. If no u2 ≤ p can be found the search can be

stopped, otherwise another disjoint confidence interval is found.

Here, we have described the search for disjoint and balanced confidence inter-

vals for xq with q > 0.5. The search for xq with q < 0.5 can be done analogously.

quantile (q) rank (c) lower bound (l) upper bound (u)
0.007 7 2 14
0.023 23 14 34
0.047 47 34 61
0.077 77 61 95
0.114 114 95 135
0.157 157 135 181
0.206 206 181 232
0.259 259 232 287
0.316 316 287 346
0.376 376 346 407
0.438 438 407 469
0.5 500 469 531
0.562 562 531 593
0.624 624 593 654
0.684 684 654 713
0.741 741 713 768
0.794 794 768 819
0.843 843 819 865
0.886 886 865 905
0.923 923 905 939
0.953 953 939 966
0.977 977 966 986
0.993 993 986 998

Table 2.1: Disjoint and balanced confidence intervals for p = 999 and α = 0.05.
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Figure 2.2: Pr [Yi ≤ xq ≤ Yi+1] (ordinate), see Equation (2.13), versus rank i (ab-
scissa) for q given by Table 2.1.

If the sample size p is even, we suggest not to start by estimating x0.5, two differ-

ent starting points for q < 0.5 and q > 0.5 could be used instead. For simplicity

we described a linear search to find a valid value of c2. Of course, this linear

search could be replaced by a more efficient binary search within the unprocessed

area. However, we do not think that efficiency of this approach is very important

because the sample size p is usually not too large for fast execution. This way

of splitting {Yi}pi=1 into disjoint confidence intervals will be important later on,

when several quantiles are used to interpolate a distribution function.

In Table 2.1 the results of our algorithm are shown in an example for p = 999

and α = 0.05. The first column shows q, selected by Equation (2.15). The second

column is the rank c of the belonging order statistic. The third and the fourth

column are the bounds u and l of the balanced confidence interval. We can see

that all confidence intervals are disjoint and that {Yi}pi=1 is split into 23 parts. We
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can even see that consecutive confidence intervals fit exactly to each other, so that

ui−1 = li holds for any i. The position and size of the confidence intervals are

symmetric with centre at q = 0.5. Only the lowest and highest order statistics

are not used in any confidence interval. The probability Pr [Yi ≤ xq ≤ Yi+1], see

Equation (2.13), is depicted against the rank i in Figure 2.2. For q we selected

the values which are shown in Table 2.1. The density functions for low and high

quantiles are asymmetric and have a small confidence interval. The confidence

interval of the median is the largest and the density function is symmetric.

For q = 0.5 the distance u − l is the largest, see Table 2.1. Because l =

469 and u = 531 the confidence interval of the median contains u − l = 62

order statistics. Using Equation (2.15) we receive a confidence interval size of
u−l
p+1

= 531−469
999+1

= 0.062 in the probability domain. The maximum error can be

controlled by a specified threshold in the probability domain. It is possible to

calculated how large the sample size p has to be to satisfy this threshold without

the knowledge of Yl and Yu. A larger p leads to a smaller distance u − l. In this

case only one random sample has to be collected. The confidence interval size

in the domain of the measure can be calculated by Yu − Yl, which depends on

the underlying distribution FX(x). In this domain, the confidence interval of the

median is not necessarily the largest. Again, the maximum error can be controlled

by a specified threshold in the domain of the measure. In this domain controlling

the error is more difficult because the values of the order statistic Yl and Yu are

needed. If Yu − Yl is larger than the threshold a sample of larger size has to be

collected. This should be done sequentially until Yu − Yl is small enough to meet

the threshold.

2.4 Quantiles of Simulation Output Streams

In previous sections we assumed random samples that are independent and iden-

tically distributed. However, in general the output stream of a simulation is a
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stochastic process whose states at different time instances are dependent and not

identically distributed. Thus, in general, Equation (2.4) and Equation (2.5) do not

apply. In consequence, most other equations of previous sections do not directly

apply. In the analysis of simulation output data special statistical methods are

needed to estimate quantiles. This will be discussed in this section. However,

Equation (2.4) and Equation (2.5) do apply across the collected data of multiple

independent replications.

The most important property of a quantile estimate is its statistical accuracy

with respect to an efficient calculation. The variance of a quantile estimator de-

creases as the number of observations increases. Random errors are caused by

the stochastic variations of the simulation. They are caused by the fact that every

simulation is like a statistical experiment. The next source of error is the bias

of the estimator itself, often called the systematic error. This kind of error usu-

ally appears if assumptions about the analysed data hold only approximately or

asymptotically. If both the variance and the bias tend to zero for large number of

observations, the estimator is called consistent. More details about these statisti-

cal properties of quantile estimators can be found in [76-JC85]. There are further

properties besides these statistical ones which characterise a suitable estimator.

Storage requirements and calculation time are potentially important because usu-

ally a huge amount of output data needs to be processed to obtain trustworthy

results. Therefore, not only the mathematical definition of the estimator, but also

the way it is computed is of interest. Efficient data structures and algorithms are

important. To guarantee a proper use of the estimator, even by inexperienced

users, it is important that the quantile estimator is easy to understand and that the

number of user-specified parameters is small, preferably zero. A classification of

these properties is given e.g. in [63-GS97] for the general problem of estimating

standard error.
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2.4.1 Single Quantile

The estimation of a single quantile of the steady state distribution, when simulat-

ing a single instance of a time-stationary process, is considered by Iglehart, Seila,

Heidelberger and Lewis, Jain and Chlamtac, Chen and Kelton (see e.g. [74-Ige76],

[119-Sei82], [71-HL84], [76-JC85], [25-CK99]). The methods of Iglehart and

Seila are limited to regenerative processes. The subdivision of the output data

into its regenerative cycles is a natural way to overcome the problem of autocor-

relation. The method of Seila extends the method of Iglehart by grouping the

regenerative cycles into batches. The number of parameters which have to be

specified by the user is reduced by this batching approach to one parameter: the

batch size. However, the determination of the batch size is a difficulty common

to every batching approach; it is difficult for an inexperienced user to choose an

appropriate value. The method of Heidelberger and Lewis addresses the prob-

lem of quantile estimation in dependent sequences. Their method is not limited

to regenerative processes, which is an important improvement for the analysis of

simulation output data. The point estimate based on ordered data is still valid in

the dependent case, but its variance may be inflated leading to a larger interval

estimate. Two basic solutions are given. On the one hand, the higher variance can

be calculated directly with the spectral method (see [72-HW81]). On the other

hand, the data can be transformed to almost independent data by using a batch

means method (see e.g. [52-FY97]). Because this method is closely related to

mean value analysis, we will discuss it in more detail at the end of this section.

The method of Jain and Chlamtac uses a completely different kind of quantile es-

timator. Their estimator is based on markers, which are adjusted when collecting

new observations. This is done by a piecewise-parabolic interpolation. Because

of this interpolation, this method is not recommended for quantile estimation of

discontinuous distribution functions. The estimator seems to be quite complicated

compared to the usual estimators based on ordered data. However, the principal
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advantage is that the method requires only a constant (and small) amount of mem-

ory. Chen and Kelton describe a method that estimates a quantile by focusing

on observations which are located in the neighbourhood of this quantile. Their

method is sequential to ensure an accurate final estimate. However, the quality of

this method has not been exhaustively studied yet.

A method for quantile estimation in finite-horizon simulation is described in

[7-AW95] and [8-AW98]. This method is based on multiple replications of the

finite-horizon simulation. These replications are dependent on each other because

negative correlation is introduced into their streams of input random numbers to

reduced variance. Avramidis and Wilson propose that this approach yields im-

provements under special assumptions (see also [77-JFX03]). However, more

extensive experimental evaluation of the proposed quantile estimators is needed.

The estimation of one single quantile is usually done to analyse the tail be-

haviour of a distribution. In this case typically the 0.95-quantile (resp. 0.05-

quantile) is estimated. For more extreme quantiles than this it might be more

appropriate to use rare event simulation. However, sometimes the median (0.5-

quantile) is estimated instead of the mean value, because the median is more ro-

bust against outliers.

Here, we will discuss the Method of Heidelberger and Lewis, which is pro-

posed in [71-HL84], in more detail. It is closely related to mean value analysis

and is, therefore, a candidate for further extensions. In Chapter 6 we will re-

fer back to this section. This method of quantile estimation of simulation output

data is maybe the first approach that is suitable for dependent, but identically dis-

tributed, sequences X1, X2, . . ., as this is the situation in steady state phase. The

maximum transformation M = max(X1, X2, . . . , Xυ) is used to estimate a quan-

tile xq = F−1
X (q), with q > 1

2
. For q < 1

2
a minimum transformation can be

defined analogously. The CDF FM(x) can be derived by Equation (2.8):

FM(x) = Pr [M ≤ x] = (FX(x))υ. (2.21)
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The probability of quantile xq is, therefore, FM(xq) = qυ. In [71-HL84] is pointed

out that choosing υ so that qυ ≈ 0.5 is desirable. In this way the problem of

estimating an extreme quantile is reduced to the estimation of the median. The

drawback of this transformation is that the variance of the estimator is increased.

The original output process X1, X2, . . ., Xmυ of fixed size mυ is partitioned

and transformed into Mi = max1≤k≤υ(Xi+(k−1)m), so that we receive M1, M2,

. . ., Mm. Heidelberger and Lewis point out, that the purposes of the transforma-

tion are

• a reduction of the sample size,

• estimating the median rather than an extreme quantile,

• to possibly reduce correlation.

The reduction of correlation depends on the particular output process. The se-

quence of random numbers cannot be randomised, because this will hide the orig-

inal autocorrelation structure.

Let M ′
1 ≤ M ′

2 ≤ . . . ≤ M ′
m be the sorted sequence of M1, M2, . . ., Mm. A

point estimate of xq is given by

x̂q = M ′
bmq+1c, (2.22)

compare with Equation (2.14). The estimation of an interval estimate is still not

straight forward. Because the sequenceM1,M2, . . .,Mm is correlated, the estima-

tion of the variance involves advanced techniques. A spectral method is suggested,

as it is done in [72-HW81] for mean value analysis. As additional alternatives

variations of the batch means method, see e.g. [52-FY97], are used.

Heidelberger and Lewis recommend that at least 10% precision be obtained,

although this choice does not guarantee valid confidence interval coverage. The

batch mean methods seem to save more storage than the spectral method. Fur-

ther advantages are that they are conceptually simpler and more readily adaptable
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to sequential methods. However, they require a more stringent independence as-

sumption than the spectral method, according to Heidelberger and Lewis. The

problem of the presence of an initial transient, i.e. the sequence X1, X2, . . ., Xmυ

is not identically distributed, is not addressed in [71-HL84]. Furthermore, the

determination of a valid batch size for the batch mean methods is not addressed,

either.

2.4.2 Several Quantiles

If the analyst is interested in the complete distribution function of a performance

measure the estimation of several quantiles is useful, because the quantiles de-

scribe the probability distribution at special points. The estimation of several

quantiles of the steady state distribution is addressed by Raatikainen, see for ex-

ample [108-Raa87]. The method of Jain and Chlamtac is extended by introducing

additional markers to estimate more quantiles. The adjustment of the markers is

done in the same way as before. An investigation of the variance of this method is

given in [109-Raa90]. A different approach is proposed in [110-Raa95]. In previ-

ous publications the location in the range of the measure is estimated for a fixed

probability. Here, the probability of a predefined “category” of the range of the

measure is calculated. The most obvious “category” is maybe X ≤ x resulting in

a point and interval estimate of FX(x). This method is well tested and known to

give statistically accurate results, therefore, we will discuss it in detail at the end

of this section.

One of the main difficulties in quantile estimation is the high computational

effort and the large amount of storage needed to order the observations. There-

fore, Heidelberger and Welch reduce the sample size by a maximum transforma-

tion (see [71-HL84]). Jain, Chlamtac and Raatikainen go further and avoid sort-

ing the output data by using an interpolation. In recent publications of Hashem,

Schmeiser and Wood (see [68-HS94] and [139-WS94]) or Chen and Kelton (see
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[26-CK01] and [24-Che02]) quantile estimators based on order statistics have be-

come popular again. This may be due to increased memory and processor speeds

making these methods more practical. Wood and Schmeiser describe a batch-

ing method for quantiles which is similar to batch means and consider different

quantile estimators, all based on ordered observations. The batch statistic is given

by one of four quantile estimators, which are all based on ordered observations.

Again, the difficulty is how to chose an appropriate batch size.

In [26-CK01] the previous method of estimating a single quantile is extended

to the problem of estimating several quantiles. Again, the extended method is se-

quential as the previous version. In [27-CK06] the coverage of both, the single and

the multiple quantile estimator are assessed. The coverage of the single quantile

estimator is even higher than expected. This estimator also reduces the amount of

data that needs to be stored. However, the average run length of all experiments is

below 12.5 · 106 observations. Storing this data takes about 200 MB of memory,

assuming 16 bit numbers, and is no problem for modern computers. Even sorting

of this data should not take long if efficient data structures are used and the data is

sorted by merging small samples into the already sorted large sample. Chen and

Kelton state that savings in storage and sorting are substantial. This statement is

not supported by their experimental results. For some quantiles of correlated data

the coverage of the multiple quantile estimator is not as expected. This might indi-

cate that the runs-up test (see [81-Knu98]), which is used to transform correlated

data into quasi-independent data, is not the best choice. Furthermore, the issue of

correlation between estimated quantiles of the same sample is not addressed.

Two different density estimators are described in [28-CK06]. One is based on

histogram estimation, which is closely related to quantile estimation. The other

one is based on the use of a kernel function. By experiment Chen and Kelton show

that the histogram density estimator is superior because the coverage of estimated

confidence intervals is better. They conclude that the histogram procedure is more
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suitable as a generic density estimation procedure since it requires less computa-

tion and delivers a valid confidence interval.

The most recent Method of Raatikainen, see [110-Raa95], aims at the estima-

tion of the probability qk = Pr [X ∈ Ck] of a predefined “category” Ck of a random

variable X in steady state. Here, we will discuss this method in more detail be-

cause it is probably the most studied estimator. It will be used for comparison in

later chapters of this thesis. By defining Ck = [−∞, xk] this method estimates

qk = FX(xk) for 1 ≤ k ≤ m. Raatikainen remarks that this method is suitable

for 5 ≤ m ≤ 25 estimates. The main idea is to use the arc sine transformation to

determine interval estimates for all qk.

LetX1,X2, . . .,Xn be the simulation output at a temporary simulation horizon

n. An estimate of qk is given by

q̂k =
1

n

n∑
j=1

Ik,j , (2.23)

where

Ik,j =

 1 if Xj ∈ Ck,

0 else.
(2.24)

is a binary function. Note the similarities of Equation (2.23) and Equation (2.6).

Raatikainen points out that a confidence interval for q̂k can be calculated by

q̂lk =

(
sin

(
max

(
0, sin−1

(√
q̂k

)
− δk

2

)))2

and (2.25)

q̂uk
=

(
sin

(
min

(
π

2
, sin−1

(√
q̂k

)
+
δk
2

)))2

for the lower and upper bound, where δk is the desired halfwidth specified by the

analyst. We receive the confidence interval [q̂lk , q̂uk
]. According to Raatikainen,

the following relation of the confidence level α̂k holds:

δk = F−1
t

(
1− α̂k

2
; νk

)
· sq̂k√

q̂k(1− q̂k)
, (2.26)
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where Ft(x; νk) is the cumulative probability of the t-distribution with νk degrees

of freedom and s2
q̂k

is an estimate of Var [q̂k]. So, the confidence level α̂k of the

confidence interval [q̂lk , q̂uk
] is given by

α̂k = 2Ft

(
−δk

√
q̂k(1− q̂k)
sq̂k

; νk

)
. (2.27)

In Equation (2.26) and Equation (2.27) the estimate s2
q̂k

is needed. As Raatikainen

points out, there are various different ways of estimating Var [q̂k] like batch mean,

see e.g. [50-Fis78], or spectral analysis, see e.g. [72-HW81].

Raatikainen defined a stopping criterion for sequential simulation that is based

on Bonferroni’s inequality:
m∑

k=1

α̂k ≤ α, (2.28)

where α is the combined confidence level with

Pr [q1 ∈ [q̂l1 , q̂u1 ] ∧ · · · ∧ qm ∈ [q̂lm , q̂um ]] ≥ 1− α. (2.29)

The simulation can be stopped if Equation (2.28) is fulfilled. For more details

about this stopping criterion and an alternative stopping criterion see [110-Raa95].

Our focus is to estimate FX(x) on basis of several quantiles. This may in-

volve the calculation of much more than 25 quantiles, which is the highest rec-

ommended number of estimates for this method. The reason for this restriction

of Raatikainen’s method is the use of Bonferroni’s inequality in Equation (2.28).

If m is large the corresponding α̂k have to be very small. Coverage of the corre-

sponding confidence intervals might shrink faster than expected.

The estimates q̂k are based on Ik,j , which are derived from the same sequence

X1, X2, . . ., Xn. Therefore, all q̂k are correlated among each other. Especially for

two neighbouring estimates higher correlation can be expected. Possibly a recom-

mendation is needed, how to choose the k “categories” Ck optimally. Depending

on the purpose, an automatic selection of a set of Ck would be desirable.
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2.5 Summary

In this chapter we showed various characteristics of simulation models, output

processes and estimators. We pointed out that estimating a set of quantiles is a

promising way to approximate the underlying probability distributions. For this

reason we discussed basic mathematics of quantile estimation of an independent

and identically distributed random sample. We also introduced a way of select-

ing a set of quantiles with disjoint confidence intervals to avoid high correlation

between the estimates. The special situation of quantile estimation of simula-

tion output data is surveyed. Methods are explained in detail, which will be used

for comparison and for further extensions. These methods are probably the most

studied estimators with good statistical performance. In further chapters we would

like to extend and improve on these existing methods by transferring them to the

simulation scenario of independent replications. The discussion of the advantages

of independent replications is done in the next chapter.



Chapter 3

Parallel Simulation Scenarios

In this chapter we discuss parallel simulation scenarios in general. Parallelisation

of simulation can be done at various levels, for example we can split the simula-

tion program into functional units, decompose the simulation model into almost

independent submodels, parallelise the generation process of output data, or par-

allelise the analysis of output data, see [111-RW89]. Here we want to describe the

kind of parallelisation we require, its advantages and differences to other parallel

simulation scenarios.

An early approach for parallelising simulation was to distribute functional

units to parallel engines. Functional units are those components of a simulation,

which are not part of the model itself, for example the pseudo-random number

generator. Because the number of functional units is usually small, the degree of

parallelisation and, thus, the achievable speedup is very limited. Therefore we do

not consider this kind of parallelising any further.

3.1 Decomposition of Simulation Models

One common way of parallelising of simulation is to distribute the simulation

model itself, which is commonly referred to as parallel discrete event simulation,

see [53-Fuj90]. This assumes that the model is decomposable into submodels.

The number of possible submodels determines how many parallel engines can be

37
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used to make a given simulation more efficient. This approach is attractive if the

memory requirement of the simulation is too high for a single computer. However,

as well as the need for a decomposable model, there is one main disadvantage.

The communication between the submodels can be difficult. To assure that the

simulation of submodels is synchronised, avoiding causality errors, various com-

plex techniques have been introduced. These range from the conservative to the

optimistic class of techniques. The conservative approach strictly avoids causality

errors due to submodels operating at different model times. Optimistic approaches

try to detect causality errors and rollback to a recovery state. In this scenario the

degree of parallelising is limited by the model itself, because decomposing the

model requires almost independent submodels.

3.2 Classical Independent Replications

In contrast to decomposition of the simulation model there are methods who start

replications of the same simulation model using different random numbers. Note,

that the use of replications does not exclude the possibility to distribute each sim-

ulation model. In Section 2.1.2 we stated that the output data of a simulation

run forms a sequence of random variables {Xi}∞i=1. In general, the CDF FXi
(x)

depends on the initial state of the simulation model, especially for small i. Let

{xi}∞i=1 be a realisation of {Xi}∞i=1. This means that {xi}∞i=1 contains the obser-

vations of one given simulation run. These observations also depend on the initial

state of the model. In stochastic computer simulation pseudo-random number

generators are used to introduce randomness into the simulation model. p simu-

lation runs of the same model with the same initial state but with different seeds
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Figure 3.1: Mean value estimation by horizontal analysis using the IR scenario.
The mean x̄j of each replication can be calculated. The set of all x̄j form an
independent and identically distributed sample. On basis of this sample an overall
mean ¯̄x and its confidence interval can be calculated.

result in p different independent sequences of observations:

Replication 1 : x1,1, x1,2, . . .

Replication 2 : x2,1, x2,2, . . .

. . .

Replication p : xp,1, xp,2, . . .

All p sequences are realisations of {Xi}∞i=1 and are called replications. To de-

note the set of p sequences we will use the notation
{
{xj,i}∞i=1

}p

j=1
. xj,i is the

ith observation of the jth replication. nj denotes the number of observations col-

lected in each replication. Dependencies between the components of {xj,i}nj

i=1

and {xj′,i}
nj′
i=1, where j 6= j′, can be effectively excluded by using non overlap-

ping streams of pseudo-random numbers in each replication.

The use of independent replications (IR) to estimate the steady state mean is

discussed in [85-LK00]. Each sequence {xj,i}∞i=1 is used to calculate an estimate

x̄j:

x̄j =
1

n− lE

n∑
i=lE+1

xj,i. (3.1)

Here, lE is the truncation point to distinguish between the transient and the steady
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state phase in mean value analysis and ∀(j) : nj = n is assumed. With regard

to the index i we will call this approach horizontal analysis of the output data, as

depicted in Figure 3.1. Then, the overall mean is given by

¯̄x =
1

p

p∑
j=1

x̄j . (3.2)

The estimates x̄1, x̄2, . . ., x̄p are independent of each other and the variance of

the overall mean can be calculated by standard methods. The variance and the

assumption of a normal or a Student’s t-distribution leads to an interval estimates

of the steady state mean. For large p (≥ 100) normality can be assumed, for small

p the Student’s t-distribution is chosen.

The parallel simulation scenario of independent replications shortens the time

needed for collecting p independent sequences, due to parallel generation of out-

put data. In general, the degree of parallelisation is not limited. Replications can

easily be run in parallel on many processing engines. One of the main advantages

of running parallel replications is the increased speed in collecting observations,

which is linearly bounded according to p. Practical issues of running replications

in parallel, such as scheduling policies and the effects of changes in workload,

are discussed for example in [89-Lin95]. In [69-Hei86] the statistical properties

of estimates obtained by a distributed simulation model and parallel independent

replications are compared. One conclusion is that “if the run length is long or if

the initial transient is weak, then replications will be statistically more efficient

than distributed simulation (distribution of the model) in estimating steady state

quantities”. However, in our understanding both the distribution of a model, and

performing parallel replications, are two different techniques which do not ex-

clude each other. Furthermore, in [70-Hei88] the issue of replications with too

short run length is discussed. It is pointed out that estimates based on a very large

number of too short replications almost certainly lead to biased estimates. This

result is supported by [138-Whi91] and additionally it is stated, that “it usually is
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more efficient to make one long run than to make independent replications”, but

“it usually does not matter much”. The issue of steady state analysis using inde-

pendent replications is considered in [61-GH92a]. It is pointed out that special

care needs to be taken in order to obtain estimators with the proper convergence

behaviour, and that the number of replications, the length of the replications and

the length of the initial transient need to be controlled in order to produce valid

confidence intervals for steady state parameters.

In this section we discussed classical independent replications, where analysis

is usually based on samples of fixed size. We distinguish two additional versions

of independent replications which operate without a fixed sample size and are

applicable in sequential simulation. In the scenario of asynchronous independent

replications each replication is of different length. In the scenario of synchronous

independent replications all replications have the same length at all intermediate

stages of analysis. These two scenarios are discussed next.

3.3 Asynchronous Independent Replications

In asynchronous replications each replication runs at its own individual speed,

thus, each replication may produce a different number observations. An exten-

sion of the independent replications scenario is the use of multiple independent

replications in parallel (MRIP), as introduced and discussed in [105-PYM94] and

[100-Paw00]. In addition to parallel generation of output data the analysis is partly

distributed. In the MRIP scenario replications are asynchronous. They run at their

own speed and do not wait for slower replications. Therefore, we can expect

that replications deliver output data at different rates, i.e. if j 6= j′ then nj 6= nj′ .

When using asynchronous replications, it is advisable to perform an asynchronous

analysis of each replication to use the full potential of parallel computation. This

means that all {xj,i}
nj

i=1 are analysed separately and deliver local estimates. All

local estimates of the p replications can be combined to a global estimate, as de-
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Figure 3.2: In the MRIP scenario the global estimate is calculated on basis of
local estimates. Every time a replication reaches a checkpoint analysis of the
output data of this replication is done. Local estimates with adequate statistical
properties are transmitted to a global analyser that calculates a global estimate.

picted in Figure 3.2. With regard to the index i a horizontal analysis of the output

data is done.

This approach is very time efficient because every engine can run at its own

speed. In [102-PM01] the increase in speed is analysed in more detail. It is pointed

out that the speedup of parallel replications follows Amdahl’s law ([4-Amd67]).

The speedup is not always linear because parts of the simulation experiment can-

not be run in parallel, e.g. the generation of seeds for the pseudo-random number

generator. Thus, the mean speedup S̄ of sequential stochastic simulation using

MRIP depends on p as:

S̄ =

 1
f̄+(1−f̄)/p

, for p ≤ d (1−f̄)N̄min
D̄

e;
N̄min

f̄ N̄min+D̄
, for p ≥ d (1−f̄)N̄min

D̄
e,

(3.3)

where N̄min is the mean number of observations needed for stopping simulation

when a single simulation engine is used, f̄ is the mean fraction of the N̄min obser-

vations that cannot be produced in parallel (e.g. the initial transient phase), and D̄

is the mean distance between checkpoints. This law, formulated in [102-PM01],

has been called a truncated Amdahl law of MRIP. It is assumed that replications

do not need any supervision or synchronisation and the p simulation engines make
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exactly the same contribution to a given simulation. One can see that S̄ is a linear

function of p only if all observations can be cooperatively produced in parallel,

i.e. f̄ = 0, and the maximum of S̄ strongly degrades as f̄ increases.

The speedup S̄ is given by Equation (3.3) in the asynchronous case. How-

ever, since a homogeneous set of processors operating as simulation engines is

assumed, S̄ determines the upper bound of mean speedup. This approach is fault

tolerant with regard to p, the number of replications. If one replication is lost, e.g.

one of the engines is disconnected for any reason, the simulation experiment can

be continued on basis of the remaining p − 1 replications. An implementation of

the asynchronous MRIP scenario is AKAROA-2 ([47-EPM99]), which is a fully

automated simulation tool designed for running distributed stochastic simulations

in a local area network.

3.4 Synchronous Independent Replications

In this section we would like to describe the parallel simulation scenario that will

be used in later chapters. This scenario is mainly focused on the estimation of dis-

tribution functions, and provides some speedup compared to a single simulation

run. It is related to the MRIP and ID scenario. However, the analysis of the data

is done in a vertical way across replications. This will be explained later.

We consider parallel replications of one simulation run. In this way the gener-

ation of output data can be increased compared to one long simulation run: instead

of collecting just one value at each observation index, a whole sample of p obser-

vations can be collected. The statistical advantage of having an independent and

identically distributed random sample of Xi due to the use of parallel replications

seems to be a good starting point for quantile estimation.

In the MRIP scenario local estimates make a distributed analysis possible.

Unfortunately it is not always possible to give a local estimate on basis of one

replication for any kind of performance measure. In mean value analysis a local
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Figure 3.3: Synchronised data collection of independent replications and vertical
analysis of output data. The ith observations of each replication are combined
to an independent and identically distributed sample. On basis of this sample
statistical properties of Xi can be derived.

estimate is basically just the average of a substream of {xj,i}
nj

i=1. When estimat-

ing quantiles the local estimate is difficult to find on basis of {xj,i}
nj

i=1, because

standard quantile estimators are usually based on independent and identically dis-

tributed random samples (see Section 2.2) and techniques for the dependent case

have to be applied (see Section 2.4). Here, a quantile can be estimated on basis of

{xj,i}pj=1, which is not a local estimate. {xj,i}pj=1 (column) is an independent and

identically distributed sample, whereas {xj,i}ni=1 (row) is autocorrelated and may

not be identically distributed. To be able to perform this kind of vertical analysis,

synchronous replications are needed so that ∀(1 ≤ j ≤ p) : nj = n at any time.

The synchronisation of replications can be done in a relative simple way by using

a buffer for each replication. The set of output data can be sequentially extended

by simply accessing the next observation index n+ 1. The final length of a simu-

lation experiment is not determined because the current simulation horizon n can

always be increased. Using this kind of synchronisation the issue of too short

replications, as discussed in [70-Hei88] and [138-Whi91], does not occur.

In the synchronous case all replications can run only as fast as the slowest en-

gine, but still, a new sample {xj,n+1}pj=1 is available instantaneously when each
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of p simulation engines generates just one observation. The communication over-

head is also an issue for quantile estimation because a single engine is not able to

give a local quantile estimate. Details of the quantile estimators proposed in this

thesis are given in Chapter 4. In Equation (3.3) the mean distance between check-

points D̄ of analysis is assumed to be constant. In Chapter 6 we will see that for

the synchronous case and quantile estimation a geometrically growing distance is

advisable to reduce too many unnecessary calculations. Synchronous replications

have some mathematical advantages. At every observation index i we receive

{xj,i}pj=1. With regard to the index j this approach represents a vertical analysis

of the output data, as depicted in Figure 3.3. This is a new approach because both

the IR and MRIP scenario perform horizontal analysis. If the replications are in-

dependent of each other, the observations {xj,i}pj=1 at a fixed observation index i

represent an independent and identically distributed random sample of Xi. This

is a very important feature of the analysis of synchronous replications because it

enables new possibilities for output analysis. {xj,i}pj=1 fulfils all assumed precon-

ditions of Section 2.2. If p is sufficiently large, quantiles F−1
Xi

(q) can be estimated

by standard methods and the empirical CDF F̂Xi
(x) can be calculated for any i.

We can get an impression of how FXi
(x) is developing with growing i. In later

chapters this knowledge of FXi
(x) will be used intensively: In Chapter 4 methods

for depicting the evolution of quantiles of FXi
(x) will be described, and in Chap-

ter 5 homogeneity tests are used to find the steady state phase of simulation. The

use of synchronous replications greatly assists the analysis of FXi
(x) developing

over i.

3.5 Random Numbers

The generation of multiple streams of pseudo-random numbers with adequate sta-

tistical properties is very important for all scenarios using replications. Depen-

dencies between the components of {xj,i}nj

i=1 and {xj′,i}
nj′
i=1, where j 6= j′, can
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be avoided by using non overlapping streams of pseudo-random numbers in each

replication. We use pseudo-random number generators where the cycle of pseudo-

random numbers can be split into substreams. For a survey on this topic see e.g.

[104-PSM06]. For experiments in later chapters we will use the pseudo-random

number generators which is described in [87-LSCK02]. This generator belongs to

the class of combined multiple recursive generators and is based on 2 components,

g1,k and g2,k, each of order 3. They evolve according to the linear recurrences

g1,k = (1403580g1,k−2 − 810728g1,k−3) mod m1 and (3.4)

g2,k = (527612g2,k−2 − 1370589g2,k−3) mod m2,

where m1 = 232 − 209 and m2 = 232 − 22853. The output is defined by

uk =
(g1,k − g2,k) mod m1

m1 + 1
. (3.5)

The special case uk = 0 is avoided by returning m1

m1+1
instead. The period length

is approximately 2191 numbers and substreams of 276 numbers are available. The

size of these substreams should be larger than any possible nj . In this case the

replications can be said to be independent of each other and are realisations of the

same stochastic process {Xi}∞i=1.

In [86-LS07] (published during review process of this thesis) a test environ-

ment for pseudo random number generators is introduced and the performance

characteristics of more than 90 common random number generators is examined.

It is stated that default generators of many popular software programs, e.g. Excel,

MATLAB, Mathematica, fail several tests miserably. For simulation the random

number generator with multiple streams and substreams is recommended, which

is previously described in this section and introduced in [87-LSCK02]. For all

simulation experiments of this research work we exclusively applied this genera-

tor.
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3.6 Summary

In this chapter we discussed basic scenarios of parallel simulation and compared

the main ways of parallelising a simulation experiment. If the replications are

synchronised output analysis can be done for every synchronisation point, i.e. for

every observation index i, separately. The random sample of one observation

index i is independent and identically distributed and enables the use of advanced

statistical methods. Methods of this kind will be demonstrated in the following

chapters.



Chapter 4

Time Evolution of Quantiles

An extension of the problem of estimating several quantiles at a given time point

or in steady state, is analysis of the time evolution of these quantiles as the simu-

lation progresses. This provides deeper insight into the transient behaviour of the

system of interest. In steady state simulation this can help to verify if a steady-

state phase exists, i.e. that the probability distribution function of the analysed

performance measure is converging to its steady-state form. Parts of the discus-

sion and results of this chapter are published in [40-EMP05a], [42-EMP06]. An

application in the analysis of time dependent file popularity in Peer-to-Peer net-

works is published in [17-BEPS07].

In applications, finite-horizon simulation is frequently used to examine a given

process with a certain initial state. In this case the transient behaviour of the sys-

tem is the central point of interest. Again, the estimation of several quantiles over

time provides a deeper insight than mean value analysis only. The estimation of

several quantiles in possibly time non-stationary processes has had limited atten-

tion.

The methods of simulation output data analysis, which are discussed in this

section, are based on synchronous replications, as discussed in Section 3.4. Using

p independent replications of the simulation is a well known approach to obtain

independent sequences of output data. Let
{
{xj,i}nj

i=1

}p

j=1
denote the collected

48
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observations. xj,i is the ith observation of the jth replication. nj is an unbounded

value which denotes how many observations are collected in the jth replication.

Because we use synchronised replications only, we will assume that ∀j : nj = n.

Additionally, let us assume that ∀j : FXj,i
(x) = FXi

(x) holds for a constant

value of i, where Xj,i is the random variable of the observation xj,i. This means

that the ith observation of all replications describes the same (possibly) transient

measure. For example the ith observation could be the delay of the ith customer

leaving a system, or it could be defined as the queue length at model time i ·

100 seconds if queues are observed at regular intervals of 100 seconds. These

assumptions ensure that the data in the ith column is independent and identically

distributed, i.e. Equation (2.4) and Equation (2.5) hold for {Xj,i}pj=1 for all i.

These assumptions allow us to estimate a value of FXi
(x) by Equation (2.6). If

the whole empirical CDF is of interest, it is advisable to base the estimation on a

sorted random sample. Let {yj,i}pj=1 be the ordered sequence of {xj,i}pj=1. F̂Xi
(x)

can be estimated by Equation (2.11) on basis of {yj,i}pj=1.

4.1 Confidence Intervals in Rank and Probability
Domain

A valid estimator for the location of the q-quantile at observation index i is given

by

x̂q,i = ybpq+1c,i (4.1)

(compare with Equation (2.14)). To simplify the notation, in the further text we

will omit the dependence on i. The half width of a confidence interval of x̂q can

be described in two ways,

either as x̂q ∈ xq ± ε′q, or as x̂q ∈ xq±εq .

ε′q describes an interval in the range of the measure and εq describes an interval in

the range of the probability (see [25-CK99]). Note, the interval q ± εq should not
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Figure 4.1: Confidence intervals for quantiles.

exceed the bounds 0 and 1. ε′q and εq are dependent on each other: The interval

[q − εq, q + εq] in the probability domain has an associated interval [xq − ε′q, xq +

ε′q] = [yl,i, yu,i] given by the ranks l and u of order statistics. These ranks can be

calculated by Equation (2.14). The calculation from ranks to probabilities can be

done in a similar way by applying Equation (2.15). If one is decreased, e.g. ε′q, the

associated εq will decrease as well. However, in steep areas of FXi
(x) we expect

ε′q to be smaller (relatively) than εq. In flat areas of FXi
(x) we expect ε′q to be

bigger (relatively) than εq. This is demonstrated in Figure 4.1 with the example of

an exponential distribution. Note, the difference in size of the confidence intervals

between the steep and the less steep regions of the curve.

In general, ε′q can be calculated from

Pr{yl,i ≤ xq < yu,i} = 1− αl,u (4.2)

≥
u−1∑
j=l

(
p

j

)
qj(1− q)p−j

by decreasing l and increasing u until the chosen confidence level (1 − α) ≤

(1 − αl,u) is reached (see Equation (2.13)). Note, we always calculate balanced

confidence intervals as defined by Equation (2.20). l and u are both ranks in the

ordered sample {yj,i}pj=1 of the original observations {xj,i}pj=1 and describe the
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location of the lower and the upper border of the confidence interval. They should

not exceed the borders 1 and p. Note that neither the value of the lower border

yl,i nor the value of the upper border yu,i are involved in the calculation of the

Equation (4.2).

In [25-CK99] it is demonstrated that εq can be chosen from the asymptotic

Gaussian approximation

p ≥
z2
1−α/2q(1− q)

ε2q
, (4.3)

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution (compare

also with [97-New98]). εq can be calculated for a given setting of p, q and z1−α/2.

The confidence level α can be regarded as a constant parameter, and hence z1−α/2.

q defines the quantile itself. p remains as the only important parameter. Note, εq

does not depend on the collected observations.

Both, Equation (4.2) and Equation (4.3) do not depend on the output data

itself. Therefore, both formula can be used to estimate the half width before the

simulation experiment starts. From the point of view of mean value analysis, this

is quite surprising as a confidence interval for an estimated mean value depends

on the output data itself. However, Equation (4.2) and Equation (4.3) mainly

depend on the number of replications p, because the confidence level 1 − α can

be considered in both cases as a constant parameter. Therefore, p is the most

important parameter in the methods described in subsequent sections.

To fully investigate the transient behaviour of a measure of interest an anal-

ysis of several quantiles over time is needed. As discussed above, the use of

independent replications enables the estimation of FXi
(x) based on order statis-

tics. However, is it really appropriate to use all order statistics, i.e. all of these
1

p+1
, . . . , j

p+1
, . . . , p

p+1
quantiles to e.g. depict the transient behaviour? Because

the confidence intervals of two adjacent quantiles at j
p+1

and j+1
p+1

overlap exten-

sively (see Equation (2.13)), the estimates are highly correlated (see also Equa-

tion (2.18)). Thus, it is questionable to use both quantiles. To allow a clear de-
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piction the quantiles should be chosen with non-overlapping confidence intervals.

This suggests a method which determines a maximum number of quantiles with

non-overlapping confidence intervals, for a given number of replications p, be-

cause the half width of the confidence interval of x̂q depends on p.

4.2 Selection of Quantiles

The quantile estimates of two neighbouring order statistics Yj,i and Yj+1,i are cor-

related and the second quantile does not add much information to the estimation

of the underlying distribution. On the other hand, if the distance between two

consecutive quantiles is too large, the underlying distribution cannot be described

appropriately. We try to avoid both extremes by selecting a set of quantiles as

described in Section 2.3. The resulting set of quantiles have non-overlapping

confidence intervals. Furthermore, these confidence intervals are balanced, as

in Equation (2.20). This implies that the confidence intervals are not necessar-

ily symmetric, due to the underlying binomial distribution of the order statistics.

The confidence interval of the median is the only confidence interval that will be

symmetric. All necessary calculation can be performed before the simulation ex-

periment starts, and therefore, the run time of this method does not really matter.

A linear or a binary search for more quantiles can be performed. The flowchart in

Figure 2.1 shows a linear search.

The second method we investigate is based on Equation (4.3) and operates in

the probability domain. As in the method described in Section 2.3, the starting

point is the 0.5-quantile and the method searches for more quantiles in the direc-

tions above and below 0.5. In this case a linear or binary search is not needed,

because the next quantile can be calculated directly using Equation (4.3) and the
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following conditions:

qk < 0.5 : qk − εqk
= qk+1 + εqk+1

(4.4)

qk > 0.5 : qk + εqk
= qk+1 − εqk+1

(4.5)

qk denotes the kth selected quantile. The first condition is valid for quantiles

below the median and ensures that the upper bound of the confidence interval

of the current quantile is equal to the lower bound of the previous confidence

interval. The second condition is valid for quantiles above the median. It ensures

that the lower bound of the new confidence interval is equal to the upper bound of

the previous confidence interval. In the following we focus on the first condition,

because the second condition can be treated analogously. We can assume that qk

is given or already calculated, because we initially choose q0 = 0.5. εqk
can be

calculated by Equation (4.3). Therefore, we can use the substitution ak = qk−εqk
.

Equation (4.4) can be transformed to:

ak = qk+1 + z1−α/2

√
qk+1(1− qk+1)

p
(4.6)

Eliminating the square root leads to

0 = q2
k+1b+ qk+1ck + dk (4.7)

with b = 1
z2
1−α/2

+ 1
p
, ck = − 2ak

z2
1−α/2

− 1
p

and dk =
a2

k

z2
1−α/2

. Finally, the new qk+1-

quantile can be calculated by

qk+1 =
−ck −

√
c2k − 4bdk

2b
. (4.8)

Equation (4.8) is valid for quantiles below the median. An equation for quantiles

above the median can be derived analogously. Furthermore, in the probability

domain the location of the selected quantiles is symmetric with the median as

their centre, except for errors due to rounding of non integer values. The selec-

tion of more quantiles is continued until the bounds of the probability domain



54 CHAPTER 4. TIME EVOLUTION OF QUANTILES

[0, 1] are exceeded. With this approach the probability domain is filled with non-

overlapping confidence intervals.

In [40-EMP05a] and [42-EMP06] we pointed out that there is not much dif-

ference in accuracy between Equation (4.2) and Equation (4.3). The selection

approach based on Equation (4.3) seems less complex because no linear or bi-

nary search is needed. However, because Equation (4.2) enables us to calculate

balanced confidence intervals (see Equation (2.20)), which are therefore asym-

metric in general, we recommend to use the selection approach as described in

Section 2.3. An example of a selected set of quantiles is given in Table 2.1 and

Figure 2.1. All these calculations can be done as soon as the number p of repli-

cation is known, which is before the simulation experiment starts. Thus, the run

time of the selection approach does not influence the run time of the simulation

experiment.

4.3 Controlled Error

The confidence interval of each quantile is given by its lower bound yl,i and by

its upper bound yu,i (see Equation (4.2)). u and l are ranks in the ordered sample.

A confidence interval in the probability domain can be calculated on basis of l, u

and Equation (2.15). It follows that this confidence interval is constant over i and

does not depend on the output data itself. The error can be controlled by reducing

the confidence interval’s (relative) size to a specified threshold. By assuming a

larger number of replications the sample size p is increased. With the approach

of Section 2.3 the maximum confidence interval size in the probability domain

can be determined. If the maximum size is larger than the specified threshold,

the number of replications needs to be increased. In this way the error in the

probability domain can be controlled.

The confidence interval’s size in the domain of the measure itself is given by

yu,i− yl,i. Here, the confidence interval’s size is different for every i and can only
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Figure 4.2: Flowchart for error control.

be calculated during the simulation run. Thus, this error cannot be controlled with-

out knowing the output data. If a controlled error in the domain of the measure

is wanted the error must be derived during simulation. In case of an unaccept-

able error more replications are needed to increase the sample size, then, l and u

will be closer together and the difference yu,i − yl,i will decrease. Increasing the

number of replications can be done in two ways. Firstly, new replications could

be added to the set of previous replications. Hereby, no output data gets lost,

however, all output data needs to be stored. Storage requirement can be large.

It depends on the specified threshold and the form of the underlying distribution

function. In general, it cannot be guaranteed that available storage is sufficient.
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Secondly, the number of replications can be increased by simply starting a larger

number of replications and discarding previous replications and their output data.

For this approach the data of the current observation index needs to be stored only.

Discarding old results seems to be wasteful, however, this might be the only ap-

plicable solution. A flowchart of an implementation of this approach is given in

Figure 4.2, where d defines how many replications are added in case of insufficient

precision and imax is the wanted horizon.

For practical reasons we recommend to control the error in the probability

domain only. In addition the error in the range of the measure can be reported

during the simulation experiment. If, for any reasons, the error in the range of

the measure needs to be controlled, we recommend not to store simulation data.

This assumes that a sufficiently large number of replications can be executed in

parallel.

4.4 Examples

In the previous section we described how to select a number of quantiles. In

this section we calculate quantiles for stochastic processes with known statistical

properties to validate the results. This is followed by an investigation of the time

evolution of quantiles of more complex models. These investigations show that

the transient behaviour of quantiles is a very intuitive way to depict the transient

behaviour of a given process. Our last example is an application in Peer-to-Peer

file sharing systems. In all our simulations we used the random number generator

described in [87-LSCK02], see Section 3.5. This generator allows the choice of

many substreams, making it suitable for multiple independent replications.

4.4.1 Validation

The first experiments in this section are done to validate the estimated quan-

tiles. We choose an Autoregressive moving average (ARMA) process with known
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Figure 4.3: Time evolution of quantiles of a geometrical ARMA(2, 2) process.

steady state behaviour, see Appendix A.2, as well as M/M/1 and M/E2/1 queues.

Their transient behaviour is analytically tractable. The calculation of expected

values of the time evolution of quantiles of the response time is discussed in Ap-

pendix A.3 and Appendix A.4. Furthermore, the correlation of the output stream

of the queueing models can be influenced by the traffic intensity ρ.

The simulation results are obtained by applying the estimation method using

p = 99 replications and assuming the confidence level 1−α = 0.9. The quantiles

are selected with balanced and non-overlapping confidence intervals, as described

in Section 2.3. We expect that the estimated quantiles follow the curve of the

calculated quantiles. The curves of the calculated quantiles should be smooth be-

cause they are expected values not influenced by randomness. In contrast to this,

the curve of the estimated quantiles are expected to show high frequency oscilla-

tions due to random errors. Note, that all quantile estimates and their confidence

intervals are calculated for a specified confidence level 1− α.

q 0.07 0.18 0.33 0.5 0.67 0.82 0.93
F−1

X∞
(q) 0.81 2.02 3.05 4 4.95 5.98 7.19

Table 4.1: Selected q-quantiles of FX∞(x) = N
(
x; 4, 117

25

)
.
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Figure 4.4: Time evolution of quantiles starting simulation with an empty queue
and idle server. The traffic intensity is ρ = 0.8.

In Figure 4.3 the time evolution of quantiles of the geometrical ARMA(2, 2)

process

Υ
(2)
i = 1 + Ψi +

2∑
k=1

1

2k
(Υ

(2)
i−k + Ψi−k), (4.9)

see Appendix A.2, is depicted. For the setting p = 99 and 1−α = 0.9 the quantiles

listed in Table 4.1 are estimated. The true values are given by a normal distribu-

tion, because the CDF of Υ
(2)
i in steady state is given by F

Υ
(2)
∞

(x) = N
(
x; 4, 117

25

)
,

see Appendix A.2. The straight lines in Figure 4.3 show the true values of these

quantiles for i → ∞. The process is initialised by Υ
(2)
−2 = Υ

(2)
−1 = E

[
Υ

(2)
∞

]
= 4.

This initialisation leads to a very short transient phase, which is approximately
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Figure 4.5: Time evolution of quantiles starting simulation with an empty queue
and idle server. The traffic intensity is ρ = 0.95.

1 ≤ i ≤ 20. However, we depicted the evolution of the quantiles up to i = 1000.

The estimated quantiles follow the straight lines, which represent the true values

in steady state. Furthermore, we can see that the quantile estimates show high

frequency oscillations, as expected. Every quantile F−1

Υ
(2)
i

(q) is estimated by ex-

clusively using data collected at observation index i. Hereby, we can exclude any

bias for the case F−1

Υ
(2)
i

(q) 6= F−1

Υ
(2)
i+∆

(q), where ∆ 6= 0. However, this is also the

reason why the high frequency oscillations of the curves of the estimated quantiles

do not flatten out with increasing i. No matter which value of i is regarded, the

intensity of the high frequency oscillations will remain constant, even in steady
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Figure 4.6: Time evolution of quantiles of the M/M/1 queue starting simulation
idle but with 100 waiting customers. The traffic intensity is ρ = 0.8.

state.

In Figure 4.4 the results for the M/M/1 and the M/E2/1 queue at a traffic inten-

sity ρ = 0.8 are shown. At the beginning of the simulation the queues are empty

and the servers are idle. This medium traffic load leads to a medium correlation

of the output data (see [15-Ber79]). As one can see, the curves of the quantile

estimates follow the curves of the expected values. This implies that the estimates

are valid. The fluctuation due to randomness is also evident. The absolute vari-

ation of higher quantiles is higher than of lower quantiles due to the exponential

character of the distribution.

Results for the M/M/1 and the M/E2/1 queue at a traffic intensity of ρ = 0.95

are shown in Figure 4.5. In this case the high traffic load introduces higher corre-

lation into the stream of output data. However, the results are similar to those for

medium correlated output data. This shows that high correlation does not influ-

ence the quality of the estimates itself.

In our last experiment we choose again the M/M/1 queue at a traffic intensity

ρ = 0.8, but here 100 customers are waiting in the queue when the simulation

starts. This introduces a non monotonic behaviour of the curve of the estimated

quantiles. In Figure 4.6 we can see that this more complex behaviour does not
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influence the quality of the estimates, either. The estimated curves follow the

expected curves.

These experiments provide validation of our method of estimation of quantiles

over time. In these examples there is no evidence that either the form of the time

dependent behaviour or the correlation of the output data influences the quality of

the estimates. This suggests the estimation method is robust.

4.4.2 Common Types of Evolution over Time

The examples in this section are given to demonstrate the performance of the

quantile estimation method over time on typical forms of time dependent be-

haviour. The underlying simulation models are artificial and quite simple, how-

ever, their behaviour can be regarded as representative of many other more com-

plex simulation models. Note, a complex simulation model does not necessarily

involve a complex behaviour of the output stream.

ARMA processes are commonly used in time series analyses. They are a class

of stochastic processes with well known statistical properties. To show results of

our method of transient quantile estimation we use an geometrical ARMA(5, 5)

process, see Appendix A.2, which is defined by

Υ
(5)
i = 1 + Ψi +

5∑
k=1

1

2k
(Υ

(5)
i−k + Ψi−k), (4.10)

with the starting condition Υ
(5)
−5 = Υ

(5)
−4 = Υ

(5)
−3 = Υ

(5)
−2 = Υ

(5)
−1 = 100. All

Ψi are independent of each other and their distribution is the standard normal

distribution. {Ψi}∞i=1 is called an independent Gaussian white noise process in

[67-Ham94]. Therefore, the process {Υ(5)
i }∞i=1 is normally distributed for any i

with a transient mean and variance. The expected value of this process for large i

is E
[
Υ

(5)
∞

]
= 32. This process is highly autocorrelated, because its current value

depends on five previous values. The process is expected to converge from the

initial value 100 to 32. The estimates of the transient quantiles are shown in Fig-
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Figure 4.7: Several quantiles over time: geometrical ARMA(5, 5) process.

ure 4.7. The simulation of the geometrical ARMA(5, 5) process behaves exactly

as expected. Additionally, we get an impression of the speed of the convergence,

which is high in the beginning and increases with decreasing i. The underlying

probability distribution of each Υ
(5)
i gets more evident, as more quantiles are used.

Results of this example are published in [40-EMP05a].

The second examined stochastic process is periodic and is defined by

Xi = a · sin(ωi) + Ψi (4.11)

The cycle length of the sine oscillation is given by T = 2π
ω

with the amplitude a.

We choose T = 50 and a = 1. Again {Ψi}∞i=1 is an independent Gaussian white

noise process. The estimates of quantiles are depicted in Figure 4.8. The periodic

behaviour is visible for every depicted quantile. Again, the underlying probability



4.4. EXAMPLES 63

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80  90  100

(a) 50 replications

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80  90  100

(b) 100 replications

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80  90  100

(c) 500 replications

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  10  20  30  40  50  60  70  80  90  100

(d) 1000 replications

Figure 4.8: Several quantiles over time: periodic process.

distribution of eachXi gets more evident, the more quantiles are depicted. Results

of this example are published in [40-EMP05a].

In the previous example we estimated quantiles of normally distributed pro-

cesses. In this example we chose a process which is governed by an exponential

distribution. It is defined by

Xi = Ψ′
i · b(1− e(i

ln(0.05)
l

)). (4.12)

The process {Ψ′
i}∞i=1 is similar to the independent Gaussian white noise process,

but its distribution is exponential with mean one, i.e. FΨ′i
(x) = Exp(x; 1). The pa-

rameter b stretches the distribution. The part in brackets of the formula causes the

process to slowly converge towards its marginal distribution. This is depicted in
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Figure 4.9: Several quantiles over time: exponential process.

Figure 4.9. Both the convergence and the exponential character of the distribution

are clearly apparent. Results of this example are published in [40-EMP05a].

In general, the quantiles of areas with lower probability density seem to fluc-

tuate more (absolute not relative) than the ones of areas with high probability

density. In Figure 4.7 and Figure 4.8 this can be observed when comparing the

bounds 0 and 1 with the centre (around 0.5) of the distribution. Because the dis-

tribution in Figure 4.9 is not symmetrical, the quantiles at bound 1 fluctuate more

than the ones at bound 0. These examples show, that our approach of depicting

quantiles is suitable for both symmetrical and asymmetrical distributions, as well

as for converging and non converging processes. In [40-EMP05a] it is recom-

mended to use at least 50 independent replications to ensure a set of at least 5



4.4. EXAMPLES 65

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000

(a) short run behaviour of quantiles

 0

 20

 40

 60

 80

 100

 0  10000  20000  30000  40000  50000

(b) long run behaviour of quantiles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90 100

(c) F̂X50(x): ECDF at index 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90 100

(d) F̂X50000(x): ECDF at index 50000

Figure 4.10: Quantiles and ECDFs of a bounded random walk.

different quantiles with α = 0.1.

4.4.3 More Complex Examples

In this section we will apply the quantile estimator on the simulation output of

models with more complex behaviour. The structures of the models itself are

still quite simple. However, being unaware of their complex evolution over time

would lead to errors in common simulation output analysis, especially in mean

value analysis.

The first process is based on a random walk X ′
i, which is defined by

X ′
i =

 X ′
i−1 + 1, with probability 0.5,

X ′
i−1 − 1, with probability 0.5,

(4.13)
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with the initial state X ′
0 = 50. The process X ′

i can take any value between −∞

and +∞. The final process Xi is bounded, so that its range is the interval [0, 100]:

Xi =


0, if X ′

i < 0,

X ′
i, if 0 ≤ X ′

i ≤ 100,

100, if X ′
i > 100.

(4.14)

A similar process was used in [12-BB99]. Because Xi is bounded a marginal

distribution for i =∞ exists.

The peculiarity of this process is that the expected value E [Xi] = 50 is con-

stant over i, whereas all quantiles other than the median are not constant and con-

verge to the thresholds 0 and 100, see Figure 4.10(a) and Figure 4.10(b). FXi
(x) is

very steep around x = 50 for small i, see Figure 4.10(c). After a long simulation

time the shape of FXi
(x) is completely different. For large i it is very flat around

x = 50, see Figure 4.10(d). However, the expected value E [Xi] is constant for all

i. Analysis of mean values only would show a constant behaviour, even though

quantiles of this process are transient and the cumulative distribution is slowly

converging to its marginal distribution. Results of this example are published in

[40-EMP05a] and [42-EMP06].

A periodic behaviour can be introduced into a queueing model in two ways.

On the one hand, the system arrivals could be governed by an oscillating function.

On the other hand, the service process could be influenced by an oscillating func-

tion. In this example we choose a single server system with an unbounded queue.

The interarrival process is a Poisson process. The service process is deterministic

and periodic. We denote this queueing process as M/Dperiodic/1. The service time

µi of the ith customer is defined by:

µi = a · sin(ωi) + µ (4.15)

The average service time µ is a positive value. a is the amplitude, with 0 ≤ a ≤ µ,

to avoid negative values of the service time µi. The cycle length T = 2π
ω

of the
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Figure 4.11: Quantiles of the response time of the M/Dperiodic/1 system.

sine oscillation is also a positive value.

In our experiments we choose µ = {0.5, 0.75, 0.9, 0.99}, a = 0.5, T = 40 and

the average interarrival time is 1.0. We observed the response time, i.e. the time

spend in queue plus the time spend in service, of consecutive customers. The re-

sults are depicted in Figure 4.11. Note that the plots have different vertical scales.

The periodic influence is clearly evident. The peaks of higher quantiles are shifted

by about T/4, whereas the peaks of lower quantiles stay close to the original pe-

riodic behaviour. Higher quantiles describe long queue length. Therefore, this

suggests that a long queue damps the effect of the periodic behaviour. The peaks

become higher and wider for an increasing µ so that they grow together (com-

pare Figure 4.11(a) and Figure 4.11(d)). Results of this example are published in
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(d) a = 4, see Equation (4.16)

Figure 4.12: Quantiles of the response time of the M/Dlogistic/1 system.

[42-EMP06].

Chaotic systems are nonlinear, aperiodic and depend heavily on initial condi-

tions. Usually they have a control parameter, which can cause the chaos to appear

or disappear. The logistic equation

µi = aµi−1(1− µi−1) (4.16)

shows chaotic behaviour if the initial state µ0 is not a fixed point of Equation (4.16).

This would lead to a constant µi. a is a positive constant with 0 < a ≤ 4. For

some settings of a the process µi converges to one value. For other settings of a

it jumps between a certain number of values after an initial phase. And for some

settings of a the process µi shows no pattern at all. Small changes of a can lead to
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completely different behaviour of µi. For a detailed discussion on Equation (4.16)

see [125-Spr03]. If the logistic equation is implicitly hidden in a model, it is very

hard to get an insight into its behaviour by analytical methods. We choose the

logistic equation to define the service time µi of the ith customer in a single server

system. This explicitly introduces a chaotic behaviour and we incorporate it in

the queueing model M/Dlogistic/1. A process of this kind is analytically tractable

only if the exact value of a is known.

In our experiments we observed the response time of consecutive customers.

The average interarrival time of the Poisson process is 1.0. We set a = {2, 1 +
√

8, 1 +
√

8 + 0.01, 4} and µ0 = 0.3. For a = 2 (see Figure 4.12(a)) the queueing

model shows a short warm up period. After this, µi is constant, and therefore,

the estimated transient quantiles seem to be stable. The point a = 1 +
√

8 is

the onset of a window, in which µi jumps between three values. This is depicted

in Figure 4.12(c). Figure 4.12(b) does not show this behaviour, even though the

value of a is very similar. For a = 4 the depiction of the quantiles does not show

any pattern. Furthermore, the time evolution of higher quantiles is not always

exactly comparable to those of lower quantiles. For example between the 40th

and the 45th customer in Figure 4.12(d) the lowest quantile is on a constant high

level but higher quantiles are increasing. Results of this example are published in

[42-EMP06].

Next we compare two common queueing models with bounded queue length,

the M/M/1/10 queue and a M/P/1/10 queue. In the second queue the service

process X(P ) is governed by the Pareto distribution

FX(P )(x) = 1− x−α, where x > 0. (4.17)

To ensure that the first and the second moment of the Pareto distribution exist, we

choose α = 3. Therefore, the mean E
[
X(P )

]
= 1.5 and the Var

[
X(P )

]
= 0.75

are finite. To obtain comparable results, we choose the service process X(M)

of the M/M/1/10 queue with the same expected value E
[
X(M)

]
= 1.5. The
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Figure 4.13: Quantiles of the response time of the M/M/1/10 system in compar-
ison with the M/P/1/10 system.

variance is in this case Var
[
X(M)

]
= 2.25. In both queueing models the average

interarrival time is 1.0 and the maximum permitted queue length is nine customers

plus one customer in service. Customers which arrive at a completely filled queue

are rejected. Both queues are stable because their queue length is bounded.

We observed the response times in the two models for accepted customers.

The results of our transient quantile estimation are shown in Figure 4.13. The

quantiles converge to their steady state values. By comparing Figure 4.13(a)

and Figure 4.13(c) it becomes obvious, that the probability distribution of the

M/P/1/10 model is more centred around its expected value than the steady

state distribution of the M/M/1/10 model. This is due to its smaller variance:
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Var
[
X(P )

]
< Var

[
X(M)

]
. The highest quantile of the M/P/1/10 model fluctu-

ates more than the highest quantile of theM/M/1/10 model. Due to our choice of

α, higher moments than α > 3 of the Pareto distribution do not exist, so this may

cause higher fluctuation (absolute) of higher quantiles compared to lower quan-

tiles. In an additional experiment we started the replications with a completely

filled queue. Theses results are plotted in Figure 4.13(b) and Figure 4.13(d).

The 10 initial customers engender a non-monotonic convergence of the quan-

tiles. For more information about quantile estimation of a M/P/1 model see

[48-FMG+01]. Results of this example are published in [42-EMP06].

4.4.4 File Popularity in Peer-to-Peer Networks

In the last years Internet technologies and infrastructures have experienced deep

advancements and evolutions to meet the increasing user requirements and to sup-

port new application requests. It is well known that the major part of traffic carried

by Internet is cause by file-sharing applications. It is not caused by the classical

Internet data applications, like e-mail or HTML clients. In [17-BEPS07] a stan-

dard simulator is improved by using a more detailed query generation process.

This process introduces dynamics of file popularity.

The file popularity function is given by

ψ(t) =


(e

2t
T−1 )/(e− 1) if 0 ≤ t < T

2
,

T
2t

if T
2
≤ t < T ,

0.5 if T ≤ t,

(4.18)

where e.g. T = 365 days. This time dependent popularity introduces a dy-

namic behaviour into the sequence {Ai}∞i=0 of query interarrival times. In gen-

eral FAi
(x) 6= FAj

(x) can be assumed if i 6= j and i, j < T . In this application

exponentially distributed interarrival times are chosen, so that

FAi
(x) = Exp(x;λ/[1− ψ(t)]). (4.19)
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Figure 4.14: Time evolution of quantiles of FAi
(x) in seconds·104 (ordinate) of

the ith query (abscissa).
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Figure 4.15: Cumulative probability (ordinate) over query interarrival time in
seconds·104 (abscissa): Interval estimates of quantiles with ψ(1) and ψ(364)
checked against the expected CDF.

For small i a long interarrival time is expected, i.e. Ai should show relatively

large values. With increasing i up to the maximum of the file’s popularity the

interarrival time Ai should decrease to a low level, implying that a relatively large

number of queries take place. After this period Ai should grow again with in-

creasing values of i because the popularity is shrinking. The evolution over time

of the quantile estimates are shown in Figure 4.14 and Figure 4.15 and are used to

verify that the query interarrival time Ai follows the exponential distribution.

In Figure 4.14 we depicted quantiles of FAi
(x) for increasing i. In this case

we considered a network with 2500 peers, 25 ultra peers and an initial number of

50 files (up to 600 considering replicas). Using α = 0.1 and p = 99 indepen-

dent replications 7 quantiles could be selected with non-overlapping confidence

intervals.

Figure 4.14(a) shows the original quantile estimates, whereas a smoothed
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curve for every quantile is shown in Figure 4.14(b). The original estimates are

smoothed by averaging 20 consecutive values. As we can see, the behaviour is as

expected. The curve of the quantile estimates of Ai start and finish on a relatively

high level indicating a low popularity. In between they are on a low level caused

by higher popularity. The big variance in the behaviour of each single quantile is

because interarrival times are independent of each other.

We verified the exponential distribution of Ai at the first and the 364th day

of the simulation with ψ(1) = 0 and ψ(364) = 0.5 (see Figure 4.15). The

smoothed quantiles and their confidence intervals are checked against FAi
(x). As

one can see, the estimates are as expected. For more details of this example see

[17-BEPS07].

4.5 Limits and Conclusion

We have developed a method of quantile estimation so that it can deal with the

evolution of quantiles over time. The set of quantiles is chosen automatically with

regard to the sample size, given by the number of replications. All quantiles are

estimated with confidence intervals, which are balanced and disjoint. This assures

that the level of correlation of quantile estimates is not too high, even though they

are taken from the same random sample. The exact degree of correlation depends

on the confidence level 1 − α and the form of the underlying probability func-

tion because Equation (2.18) depends on order statistics of the observed random

sample.

Experiments with selected models in the previous section indicate that the

estimation method is robust. It can deal with highly correlated output data, as

well as with non monotone, periodic or even chaotic behaviour. The quality of

the estimates is not influenced by these kind of characteristics of the simulation

output data.

Analysis of the time evolution of the quantiles of a measure provides a deep
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insight into the behaviour of the model itself. This can be used to understand

the dynamics of the model as well as to verify its behaviour. In modern simula-

tion tools an animation of the dynamics is common to show the dynamics of the

created model during simulation. Our estimation method for the time evolution

of quantiles supports this animation from point of view of output data analysis.

It does even more: An animation can only show one possible behaviour of the

model but the time evolution of quantiles shows all possible forms of behaviour

of a measure in connection with its probability.

An application in the area of Peer-to-Peer file sharing systems is demonstrated.

In this example interarrival times are influenced by a time dependent function. The

simulator is validated by applying the quantile estimation over time. The curves

of the quantile estimates behave as expected. This indicates that the simulator

works correct.

The number of estimated quantiles depends on the size of the random sample,

thus, on the number of replications. To obtain more quantile estimates the number

of replications must be increased. Hereby, output data of old replications could be

stored and output data of new replications could be added. On the other hand, if

storage requirements are too high, output data of old replications could simply be

discarded and a higher number of new replications could be started. The decision

of which approach should be applied depends on the hardware restrictions of the

given computer system.



Chapter 5

Initial Transient Phase

In every simulation experiment the initial state of a given model has to be set.

Assuming that the main focus of analysis is the long run behaviour, a good initial

state would be a typical state of the long run behaviour. However, because the long

run behaviour of the model is unknown this kind of initialisation is not possible.

Thus, we have to take into account that the initial state is atypical and that the

simulation needs some time to recover from the impact of the initial state. Note,

depending on the model and the initial state the simulation might never recover

from the initial state. To avoid a heavily biased final estimate a common approach

is to split the observed output data into two parts separated by the truncation point

l. Parts of the discussion and results of this chapter are published in [41-EMP05b],

[38-Eic06] and [43-EMP07a].

The convergence towards the long run behaviour can be very different and is

depending on the simulated model. Some of the methods for the detection of l

that are known so far assume special kinds of convergence and violate other kinds

of convergence. Some methods are only valid for e.g. mean value analysis. Here,

the aim is to detect a value of l, which is valid for many kinds of convergence and

for the estimation of the mean, variance, quantiles or other measures.

For automated simulation analysis it is very important that l can be detected

for a wide range of output processes. As mentioned, a steady mean value is only

76
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a necessary condition for steady state. Furthermore, the convergence to the steady

state behaviour is not necessarily monotonic. There are also situations where l

cannot be estimated because it does not exist. This could be cause by an unstable

simulation model cause by e.g. a too high load. An output process with periodic

behaviour is also an example, where no l can be determined. A method for de-

tecting l should be able to deal with all of this situations. Critical surveys can

be found for example in [54-GAM78], [99-Paw90], [37-Eic02], [90-LH02] and

[91-MI04]

Recently a statistical process control approach was discussed by [113-Rob07]

and [112-Rob02] in the context of simulation output analysis to distinguish be-

tween the initial transient and steady state. Like the proposed methods of this

thesis, this approach applies parallel replications and homogeneity tests (see Sec-

tion 5.3). As we will discuss in this chapter, the use of replications and homogene-

ity tests assist the detection of steady state in terms of the underlying probability

distribution. In contrast to this, in [113-Rob07] the advantage of obtaining a ran-

dom sample at each observation index by collecting output data of independent

replications is used to calculate a secondary process consisting of averaged obser-

vations. If the number of replications is large, normality of the averaged observa-

tions can be assumed, which assists the detection of a steady state mean. However,

by averaging observations information about their original probability distribution

gets lost. This is the reason why the approach of [113-Rob07] can only be used in

mean value analysis and is not able to detect steady state in terms of the underlying

probability distribution. In [114-RLQ05] the method of [112-Rob02] is applied to

a secondary output process, which is the exponentially weighted moving average

obtained by smoothing the original output process. On basis of the variance of

the underlying data upper and lower control limits are calculated as a function of

the observation index. The truncation point is determined on basis of a control

measure being in relative position to selected control limits. Optimal settings of
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various parameters, which are needed for the calculation of the control limits, are

depending on the output process itself. Thus, the use of this method in automated

simulation analysis is limited and a sequential execution is not discussed.

Another approach to reduce the initial bias is discussed in [9-AG06], which is

related to [58-GI87], compare also with [59-GH91a], [60-GH91b], [61-GH92a]

and [62-GH92b]. The described approach aims at estimating a truncation point af-

ter which random variables can be assumed to be identically distributed. Because

it is based on equality in distribution, this approach is superior to other truncation

point detection rules, which demand e.g. a constant mean only. It is applicable for

one single simulation run as well as for multiple replications. The need for a fully

automated approach by avoiding unspecified parameters is underlined. However,

algorithmic properties of this approach, such as time complexity, storage require-

ments and sequential execution, are not discussed. This approach is discussed

from the point of view of steady state analysis of mean values only.

A method to detect steady state is introduced by Welch, see [137-Wel83].

Welch remarked that this method checks the necessary condition of a steady mean

only. Despite of this, the method can probably be regarded as the most common

method for detecting steady state. The original output data is smoothed by av-

eraging the values of a moving window. In this way the analyst can distinguish

between random and systematic errors. This method is not acceptable in our case,

because the determination of l depends on a visual inspection of smoothed data,

no test is used to assure confidence in statistical sense. Furthermore, Welch’s

method will erroneously detect a value for l in case of an periodic output process,

even though a valid l does not exist, see [14-BE03].

This situation of detecting the steady state is discussed in more detail in the

next sections. A definition for l is given in Section 5.1. In Section 5.2 we give an

example of how different initial states influence the output process. Section 5.3

to Section 5.5 discuss a new class of methods to detect the truncation point which
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are based on comparing the probability distribution of the output process at dif-

ferent observation indexes. The results of this chapter are tested and concluded in

Section 5.6 and Section 5.7.

5.1 Concept of Steady State Phase

The output stream of a simulation run is a stochastic process {Xi}i∈N. Due to the

problem of initialisation Xi, as i→ 0, might not be representative of the system’s

usual behaviour. In many simulation studies the target is to analyse the system’s

behaviour in the long run, i.e. to analyse Xi, as i → ∞. Because of obvious

practical reasons X∞ is not directly accessible. Thus, the concept of the steady

state phase is introduced in simulation output analysis. During the steady state

phase, i ≥ l, the output data is representative of the system’s behaviour and is

(approximately) not influenced by the initial state. l is called the truncation point.

Steady state in terms of the probability distribution is given if

∀(i ≥ lF ,∆ ≥ 0, x) : FXi
(x) ' FXi+∆

(x) . (5.1)

By “'” we denote closeness of distributions, for example in the Kolmogorov

sense:

sup
−∞<x<∞

|FXi
(x)− FXi+∆

(x) |. (5.2)

Other interpretations of the operator “'” are possible, for example in the Anderson-

Darling sense. See Section 5.3 for details of the implementation of this operator.

We use lF instead of only l to explicitly point out that the truncation point is de-

termined by inspecting FXi
(x). It is known that different performance measures,

in particular different moments, converge to steady state at different rate; see Sec-

tion 5.2 for examples. Often the convergence of FXi
(x) towards FX∞ (x) is slow

and cannot be completely attained by a finite value of i, therefore, approximate

equality instead of strict equality is demanded. In this sense we call a process
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stable in terms of the probability distribution if Equation (5.1) can be fulfilled by

a finite value of lF . We define the steady state phase in terms of the mean by

∀(i ≥ lE,∆ ≥ 0) : E [Xi] ≈ E [Xi+∆] . (5.3)

Equation (5.3) can be used if the only target of the simulation is to estimate

E [X∞]. Equivalently, we define the steady state phase in terms of the variance

by

∀(i ≥ lV ,∆ ≥ 0) : Var [Xi] ≈ Var [Xi+∆] . (5.4)

We will use lF , lE and lV to explicitly mention the definition of the truncation

point. l will be used if no definition is apparent or preferred. More kinds of

truncation points are possible, e.g. for the 0.95-quantile of the distribution of Xi

the truncation point l0.95Q could be defined analogously to Equation (5.3) and

Equation (5.4).

Constant first and second moments are necessary conditions for Equation (5.1).

Thus, steady state in terms of the probability distribution implies that the mean and

the variance are in their steady state, i.e. lE ≤ lF and lV ≤ lF . However, whether

lE ≤ lV or lE ≥ lV holds depends on the output process. Both situations are pos-

sible, see Section 5.6 for examples. Note that it is possible to find processes for

which Equation (5.3), and/or Equation (5.4), hold but not Equation (5.1). In this

situation E [X∞] can be estimated even though FX∞ (x) does not exist. Whether

this makes sense or not has to be decided by the analyst. The counterpart of the

steady state phase is the transient phase with i < l. During the transient phase

Equation (5.1) does not hold.

In analysis of stochastic processes their stationarity is an important property

and is discussed e.g. in [98-Pap84], [88-LG89] and [131-Tri02]. A stochastic pro-

cess {X(t)}t∈T , not necessarily representing simulation output data, is stationary

(in the strict sense) if its statistics are not affected by a shift in the time origin.

This means that two processes {X(t)}t∈T and {X(t+ ∆)}(t+∆)∈T have the same
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statistics for any ∆. The joint distribution of any set of samples of a stationary

process does not depend on the placement of the time origin:

FX(t1),...,X(tj)(x1, . . . , xj) = FX(t1+∆),...,X(tj+∆)(x1, . . . , xj), (5.5)

for all time shifts ∆, all j and all choices of sample times t1, . . ., tj . If Equa-

tion (5.5) is true, not for any j, but only for j ≤ k the process {X(t)}t∈T is

stationary of order k. Therefore, the simulation output process {Xi}i≥lF can be

assumed to be stationary of first order, if Equation (5.1) can be fulfilled.

5.2 Convergence of M/M/1 Queues

In this section we study the convergence of FXi
(x) towards FX∞ (x) on an exam-

ple. Queueing models are one of the most important application areas of discrete

event simulation. The M/M/1 queue is known to be an analytically tractable rep-

resentative of this class of simulation models.

The advantage of the M/M/1 queue is that its steady state behaviour and

its transient behaviour are known, see e.g. [75-Jai91] and e.g. [79-KL85] and

[92-McN91], respectively. The distribution of the number of customers in sys-

tem Ni at the arrival time of the ith customer can be calculated by a numerical

approach. The execution time and the memory requirements of this numerical

approach allow the calculation of the distribution of the queue length of a mag-

nitude of i ≈ 104 customers on modern computers. This is usually enough to

reach the steady state phase. Based on the distribution of the queue length other

measures can be calculated, e.g. waiting time in queue Wi, service time Si or the

system’s response time Ri = Wi + Si of the ith customer. For more details see

Appendix A.3. The distributions, mean values and deciles, which are depicted in

Figure 5.1, Figure 5.2 and Figure 5.3, are calculated by this numerical approach.

First we study the transient behaviour of an M/M/1 queue initialised with an

empty queue and an idle server. This initialisation state is chosen very often,
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because it is this system’s state with the highest probability for ρ < 1. We chose

λ = 0.95 and µ = 1 resulting in ρ = λ
µ

= 0.95. Figure 5.1 shows the evolution of

the distribution FRi
(x) of the response time towards its steady state distribution

FR∞ (x). In Figure 5.1(a) the mean (bold line) and the deciles (dashed lines)

of FRi
(x) are depicted. They are strictly monotonic increasing and converging.

Even though the M/M/1 queue is initialised with its state of highest probability

a transient phase is present. The convergence of the mean value is similar to the

convergence of the 6th decile. This confirms to theory,

FR∞ (E [R∞]) = 1− e−E[R∞]µ(1−ρ) ≈ 0.632. (5.6)

Smaller deciles converge faster, higher deciles converge slower in absolute sense.

However, the general form of convergence looks similar for the mean and all

deciles. In Figure 5.1(b) the distribution FRi
(x) is plotted for selected values of i

(dashed graphs) and for i =∞ (bold graph). From theory we know that the distri-

bution FRi
(x) is a weighted sum of Erlang distributions, see Equation (A.34), and

the limit response time distribution is negative exponential. Thus, in approxima-

tion we can regard FRi
(x) as a negative exponential distribution with increasing

mean value as i is growing. Furthermore, we can approximate the convergence

by a product formula which results in a scaling of the distribution of the random

variable:

Ri ≈ ai ·R∞, (5.7)

where 0 ≤ ai ≤ 1. The sequence {ai}∞i=1 converges towards the value one.

Later on in this section we will see that this kind of convergence violates the

preconditions of some previously known methods for the detection of lE .

The mean number of customers in an M/M/1 queue in steady state is E [N∞] =

ρ
1−ρ

. For our second example we use λ = 0.95 and µ = 1 and we expect a mean

number of E [N∞] = 19 customers in this example. Therefore, we chose 19

initial customers. The evolution of FRi
(x) is depicted in Figure 5.2, including the
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Figure 5.2: Response time of the M/M/1 queue with λ = 0.95, µ = 1 and 19
customers in the system at time 0.
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response time of the initial customers. Again, FRi
(x) converges towards FR∞ (x).

However, in Figure 5.2(a) we can see that in this case the convergence is not

monotonic. This is because FR20 (x), the response time of the first non-initial

customer, is completely different than FR∞ (x). Both distributions are a sum of

weighted Erlang distributions but in Figure 5.2(b) we can see that the density of

FR20 (x) is approximately symmetric and FR∞ (x) is an exponential distribution.

Here, we cannot assume that the convergence can be described by a fixed class

of distributions with an additional stretch or displacement. This is interesting

especially for mean value analysis. It cannot be assumed that the mean value is

constant right from the beginning of a simulation if the system is initialised by

E [N∞] customers. This also confirms the observation of Kelton and Law that

in some simple queues the optimal initial state for mean value analysis may be

higher than E [N∞], see [79-KL85].

In our last example we choose an initial state, which is much higher than

E [N∞]. We used λ = 0.8, µ = 1 and one hundred initial customers of the M/M/1

queue. Note, here we use a different setting for λ so that a much higher initial state

is easier to obtain. This setting makes this example not directly comparable to the

previous examples, which is not our aim. In Figure 5.3 we can see even better that

the density of FR101 (x) is approximately symmetric. FRi
(x) is slowly converging

until it is exponentially distributed at t = ∞. Again, no constant distribution can

be assumed, but there is an obvious displacement of the mean value during the

transient phase.

Before we step into the description of the realisation of Equation (5.1) we

would like to review an assumption, which is done very often to describe tran-

sient behaviour of simulation output data. The assumption is that the transient

behaviour is a displacement of a stationary process:

Xi = µi +X ′
i, (5.8)

where the sequence {µi}∞i=0, with µi = µ(1 − ai), is called the transient mean
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Figure 5.3: Response time of the M/M/1 queue with λ = 0.8, µ = 1 and one
hundred customers in the system at time 0.



5.2. CONVERGENCE OF M/M/1 QUEUES 87

function. In [117-Sch82] is stated, that limi→∞ ai = 0 when the simulated output

process is asymptotically stationary. Furthermore, X ′
i is assumed to be stationary

and φ-mixing with a finite variance, see [117-Sch82]. In some cases X ′
i is even

assumed to be normally distributed, compare [118-SST83]. All these assumptions

are not supported by our studies of the transient behaviour of the M/M/1 queue.

It might hold for an M/M/1 queue initialised with a large number of customers,

because in this situation there is an obvious displacement of the mean value. It

will not hold for an M/M/1 queue which is initialised with E [N∞] customers,

because here no X ′
i can be found that is confirm to Equation (5.8). It will not even

hold for an empty and idle initialised M/M/1 queue, a popular test model, because

here the distribution of X ′
i is stretched by a multiplication and not displaced by an

addition. We can say that the assumed Equation (5.8) appears to be too restrictive

for the M/M/1 queue. Because many queueing systems behave similar to M/M/1,

this assumption seems to be not advisable for queueing systems in general. This

assumption is used e.g. in [117-Sch82] to derive a test statistic based on the theory

of standardised time series. We can find this assumption even in recent papers, e.g.

in [3-AG04]. Here, the performance of methods based on batching observations or

replicating simulations are evaluated. The results might not be valid for queueing

systems in general.

For our purpose we do not make assumptions about the form of transient be-

haviour of an output process. Our only assumption is that the distribution func-

tion during the transient phase is different from the distribution function during

the steady state phase, as described in Equation (5.1). The use of multiple inde-

pendent replications with the same initial state enables us to collect an indepen-

dent random sample which is distributed as FXi
(x). A comparison of FXi

(x) and

FXj
(x) is therefore possible without mixing data of different observation indexes.

For this comparison a nonparametric homogeneity test should be used that is not

specialised to any family of distributions.
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Based on a numerical investigation of the transient behaviour of the M/M/1

queue, which is described in [79-KL85], Kelton and Law observed that an initial

number ofN0 customers, i.e. the number of customers already present in the queue

at the beginning of the simulation experiment, slightly bigger than E [N∞] leads

to the shortest transient phase in mean value analysis. Here, we are interested

whether this is also true for analysis of quantiles or not. Figure 5.2(a) shows that

the convergence of deciles is similar to the convergence of the mean. For about

i ≥ 500 the convergence of each decile seems to be monotonic. The CDF of

R∞ is given by FR∞ (x) = 1 − e−xµ(1−ρ), see [75-Jai91]. The distance ∆(q) =

|F−1
R∞

(q)−F−1
R500

(q) | is therefore a valid measure of the rate of convergence of the

q-quantile. We calculated F−1
R500

(q) for q = {0.1; 0.5; 0.9} and N0 = {16; 19; 22}

initial customers, with ρ = 0.95 and µ = 1. We choose 16 and 22 initial customers

to have an initialisation that is slightly smaller resp. bigger than E [N∞]. To cover

the full range of 0 < p < 1 we chose two extreme quantiles and the median. The

results are shown in Table 5.1, where F−1
R∞

(0.1) ≈ 2.107, F−1
R∞

(0.5) ≈ 13.863

and F−1
R∞

(0.9) ≈ 46.052. We can see that the difference ∆(q) for an initialisation

with 22 customers is smallest and, therefore, closest to the steady state results.

This is not a proof, however, it indicates that Kelton and Laws observation is also

true for quantiles of an M/M/1 queue. If it is true for quantiles, it must be true for

the convergence of the CDF, in general. Base on these results we may assume that

an initial queue length, which is slightly bigger than E [N∞], leads to the shortest

transient phase for all possible measures.

∆(q) q = 0.1 q = 0.5 q = 0.9
N0 = 16 0.184 1.541 8.334
N0 = 19 0.136 1.158 6.886
N0 = 22 0.074 0.666 5.118

Table 5.1: |F−1
R∞

(q)− F−1
R500

(q) | for q = {0.1; 0.5; 0.9} and N0 = {16; 19; 22}
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In this section we demonstrated that the output data of the simple M/M/1 queue

is governed by a complex transient behaviour that is not covered by Equation (5.8).

Methods, which are based on Equation (5.8), are not optimal for the M/M/1 queue

and might not be for other queueing models.

5.3 Homogeneity Tests

In the discussion of the steady state phase in Section 5.1 we derived Equation (5.1).

The key operation in this equation is to check the hypothesis of identically dis-

tributed random variables Xi and Xj . In the following subsections we review

nonparametric two-sample homogeneity tests which can be used to check this hy-

pothesis.

Let FXi
(x) = Pr [Xi ≤ x] be the CDF of the random variable Xi. In the

goodness-of-fit problem the null hypothesis of

H0 : FX0(x) = FX1(x) = · · · = FXk−1
(x) (5.9)

is checked by a homogeneity test. A 1-sample version of a homogeneity test

checks a sample of a random variable X0 against a completely specified distribu-

tion function FX1(x). Whereas in a 2-sample version the samples of two random

variables X0 and X1 are compared with each other. Further more, a k-sample ver-

sion compares k random samples with each other. In a nonparametric test there

are no further assumptions about the distribution function itself. However, in gen-

eral it is necessary to distinguish between the continuous and the discrete case,

because this effects the test statistic.

Let FS(x) be the CDF of the test statistic. The significance level α is the

probability of false rejection of the null hypothesis. Typical values are α =

{0.01, 0.05, 0.1}. The null hypothesis is rejected if the test statistic S is within

the critical region. In a one-sided test the critical region is given by the inter-

vals
[
−∞, F−1

S (α)
]

or
[
F−1

S (1− α),∞
]
. In a two-sided test the critical region
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Figure 5.4: Maximum difference of two empirical distribution functions.

is given by the intervals
[
−∞, F−1

S (α
2
)
]

and
[
F−1

S (1− α
2
),∞

]
. Homogeneity test

are usually one-sided with the critical value at F−1
S (1− α).

The literature about the goodness-of-fit problem and related topics is vast,

so is the number of statistical tests. Most of the tests are specialised to a given

family of distributions or they are parametric. A short list of literature on non-

parametric tests is [45-EJJ80], [96-NW88], [30-Dan90], [56-GC92], [122-She97]

and [29-Con99]. For further discussions we choose the Kolmogorov-Smirnov test

and the Anderson-Darling test because they are nonparametric. The Kolmogorov-

Smirnov test is possibly the best known test and the Anderson-Darling test is

maybe the most powerful one, see [126-Ste74].
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5.3.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test, see [82-Kol41] and [124-Smi48], is a nonpara-

metric homogeneity test. In the 1-sample version it is based on the statistic

KS1 = sup
−∞<x<∞

|F̂X0(x)− FX1(x)|, (5.10)

and in the 2-sample version it is based on the statistic

KS2 = sup
−∞<x<∞

|F̂X0(x)− F̂X1(x)|, (5.11)

where F̂X0(x) and F̂X1(x) are the empirical CDFs of X0 and X1 consisting of n0

resp. n1 random values.

An algorithmic approach to calculate KS2 can be based on two pointers, which

are shifted within the range of the random variable. One pointer operates on the

values of the random sample of X0, the other pointer operates on X1. This can be

done by sorting the random samples of X0 and X1 so that two sorted sequences

{y0,0; y0,1; · · · ; y0,n} and {y1,0; y1,1; · · · ; y1,m} are obtained, where y·,i < y·,j if

i < j. A pointer is set to the beginning of each sequence. By shifting these point-

ers in parallel through the interval [min(y0,0, y1,0),max(y0,n, y1,m)] the difference

F̂X0(x) − F̂X1(x) can be calculated for every value of x. Because the empirical

distributions F̂X0(x) and F̂X1(x) are both step functions, only the discrete values

{y0,0; y0,1; · · · ; y0,n} and {y1,0; y1,1; · · · ; y1,m} of x have to be regarded and x can

jump from value to value in sorted order. The absolute value of the maximum of

all calculated differences is the correct statistic KS2. In Figure 5.4 the calculation

of the maximum difference of the two empirical distribution functions F̂X0(x)

and F̂X1(x) is demonstrated. The position of the maximum difference is within

the range of the measure, whereas the test statistic KS2 is a difference of two prob-

abilities. Critical values for KS1 and KS2 are known for different α-levels and for

smaller samples (< 40) they are tabulated.
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5.3.2 Anderson-Darling Test

The Anderson-Darling test, see [5-AD54], is a nonparametric homogeneity test,

like the Kolmogorov-Smirnov test. The original 1-sample version of the Anderson-

Darling test is based on the goodness-of-fit statistic

AD1 = n0

∫ ∞

−∞

(F̂X0(x)− FX1(x))
2

FX1(x)(1− FX1(x))
dFX1(x). (5.12)

Again, F̂X0(x) is the empirical distribution function of X0 consisting of random

sample of size n0. FX1(x) is a completely specified distribution function. The

2-sample version of the Anderson-Darling test, see [32-Dar57] and [106-Pet76],

is using the two empirical distribution functions F̂X0(x) and F̂X1(x):

AD2 =
n0n1

n0 + n1

∫ ∞

−∞

(F̂X0(x)− F̂X1(x))
2

H(x)(1−H(x))
dH(x) (5.13)

with H(x) = (n0F̂X0(x) + n1F̂X1(x))/(n0 + n1). In [115-SS86] and [116-SS87]

the 2-sample version is extended to a k-sample version using the test statistic

ADk =
k−1∑
i=0

ni

∫ ∞

−∞

(F̂Xi
(x)−H ′(x))2

H ′(x)(1−H ′(x))
dH ′(x), (5.14)

where ni is the sample size of Xi and H ′(x) denotes the empirical distribution

function of the pooled sample of all F̂Xi
(x), where 0 ≤ i ≤ k − 1. A computa-

tional formula for ADk is given by

ADk =
1

N

k−1∑
i=0

1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)
, (5.15)

where Mij is the number of observations in the sample of Xi, which are smaller

or equal than Zj . Z1 < Z2 < · · · < ZN denotes the pooled and ordered sample of

H ′(x) with N =
∑k−1

i=0 ni.

In [116-SS87] is shown, that E [ADk] = k−1 holds if all FXi
(x) are continuous

and if the null hypothesis (5.9) can be assumed. To check the null hypothesis,

additionally the variance of ADk is needed. It is given by

Var [ADk] =
aN3 + bN2 + cN + d

(N − 1)(N − 2)(N − 3)
. (5.16)
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Figure 5.5: Difference area of two empirical CDFs.

For details on the calculation of a, b, c and d see [116-SS87]. ADk can now be

normalised by

Tk =
ADk − E [ADk]

Var [ADk]
. (5.17)

Critical values of Tk are tabulated for k < 12 and various α-level. If k ≥ 12 holds,

the critical value of Tk is given by

tk = b0 +
b1√
k − 1

+
b2
m

m. (5.18)

Again, values of b0, b1 and b2 are tabulated for various α-level.

As it can be seen in Equation (5.14) the Anderson-Darling statistic depends on

the difference of k empirical CDFs. In contrast to the Kolmogorov-Smirnov test

not the maximum difference is regarded, but the integral over the whole range.

This integral leads to the area between the compared empirical CDFs, compare

with Figure 5.5. This area is not only influenced by the vertical difference in

the range of the probability. It is also influenced by the horizontal difference

in the range of the measure. Because of this, the Anderson-Darling test has a
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better performance than the Kolmogorov-Smirnov test, when two distributions

are compared that differ mostly at their borders, e.g. two distributions with the

same expected value but different variance.

5.3.3 Accuracy

For our purpose the most interesting performance measure of the homogeneity

tests is its ability to estimate lF . Our experience with previous implementations of

this method, [14-BE03] and [41-EMP05b], is that its accuracy is lower if the initial

state influences mostly the tail of the density function of FXi
(x). For example if

the mean is constant but the variance is changing over time. We believe that

this problem is introduced by the KS2 statistic, which is based on the maximum

difference.

To test whether the KS2 or the ADk (with k = 2) statistic delivers better results,

we applied them on two artificial output processes with a well defined truncation

point lF :

X
(A)
i =

Ψi + x− i x
lF

if i < lF ,

Ψi else.
(5.19)

X
(B)
i =

Ψi · (x− ix−1
lF

) if i < lF ,

Ψi else.
(5.20)

with x = 10, lF = 100. The randomness is introduced by the Gaussian white

noise process Ψi with the distribution N (x; 0, 1). X(A)
i is governed by a transient

mean value, whereas X(B)
i is governed by a transient variance. The results of

the truncation point detection method, see Section 5.4, are depicted in Figure 5.6.

Experiments are done for various values of p ≤ 200. The abscissa shows p, the

number of parallel replications, and the ordinate shows the estimated truncation

point lF . It is clearly evident that for both processes the estimation of lF based on
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ADk is closer to the theoretical value lF = 100 when these tests are applied for

our purpose. This is supported by the more general statements in [141-ZW07].

5.3.4 Time Complexity

The results of the previous section clearly suggest the use of ADk instead of KS2.

However, in practise the time complexity to calculate these statistics is another

important performance measure. In the best case the calculation of ADk should

not require a higher computational effort. The worst case time complexities of

both statistics are investigated next.

Lemma 5.3.1 The worst case time complexity of the execution of a Kolmogorov-
Smirnov 2-sample test is O (N logN) with N = n0 + n1.

Proof The random samples of X0 and X1 have to be sorted. Sorting of these two

samples can be done in O (n0 log n0 + n1 log n1). Because n0 > 0 and n1 > 0, the

inequality n0 log(n0) + n1 log(n1) < N log(N) holds. Therefore, the execution

time of sorting can be bounded by O (N log(N)).

The calculation of the difference |F̂X0(x)− F̂X1(x)| at a given value of x can

be done in O (1), because only a constant number of basic arithmetic operations

are involved. The algorithm is passing through the range of x by jumping from a

xi,j to its successor in sorted order. Because there are n0 + n1 = N values of x in

total, the maximum difference can be calculated in O (N).

If the given samples are small, the critical value can be looked up in the given

table in O (1). If the given samples are large, the critical value can be calculated

by a constant number of basic arithmetic operations, which leads again to O (1).

The comparison of the maximum difference and the critical value needs another

O (1).

The summary of all results leads to O (N log(N)) + O (N) + O (1) + O (1).

This shows, that the cardinal operation of the Kolmogorov-Smirnov 2-sample test
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is the sorting of the data. Therefore, the worst case execution time is O (N log(N)).

Lemma 5.3.2 The worst case time complexity of the execution of a Anderson-
Darling k-sample test is O (N2 +N log(N) + kN) with N =

∑k−1
i=0 ni.

Proof Sorting the random samples of Xi can be done in O (ni log ni). Conse-

quently, sorting of all k random samples can be done in O
(∑k−1

i=0 ni log ni

)
. Be-

cause ∀i(0 ≤ i < k) : ni > 0 is valid, the overall sorting time can can be bounded

by O
(∑k−1

i=0 ni log ni

)
< O (N logN).

By passing in parallel through all k sorted random samples the sequence Z1 <

Z2 < · · · < ZN can be generated. Each value has to be accessed only once,

therefore, this can be done in O
(∑k−1

i=0 ni

)
= O (N).

The ith column {Mij}Nj=1 of the Mij-matrix can be calculated by passing

in parallel through {Zj}Ni=j and the ith sorted random sample. This is done in

O (N + ni). Processing all k columns leads to a run time of O
(
kN +

∑k−1
i=0 ni

)
=

O (kN +N) = O (kN).

If theMij-matrix is known, the calculation of the fraction in Equation (5.15) is

done in O (1), because a constant number of arithmetic operations are needed. The

inner sum of that equation loops over N − 1 values and the outer sum loops over

k values. Therefore, the calculation of Equation (5.15) needs k(N − 1) ·O (1) =

O (kN) steps.

Combining all previous results leads to O (N logN) + O (N) + O (kN) +

O (kN) = O (N logN + kN), which is the overall worst case execution time to

calculate the test statistic ADk.

To normalise the test statistic ADk its variance is needed. Here, the calculation

of the parameters a, b, c and d (see Equation (5.16)) is not discussed in detail.

However, the cardinal equation to calculate these parameters is

N−2∑
i=1

N−1∑
j=i+1

1

(N − i)j
, (5.21)
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see [116-SS87]. The calculation of the fraction in Equation (5.21) is done in O (1).

Both, the inner sum and the outer sum of that equation loop over maximum N −2

values. Therefore, Equation (5.21) can be calculated in O ((N − 2)2) · O (1) =

O (N2) steps. The calculation of Tk (see Equation (5.17)) can now be done with a

constant number of basic arithmetic operations in O (1). Therefore, the complete

normalisation can be done in O (N2).

The critical value tk can be calculated in O (1), no matter of the value of

k. Because in every case a constant number of tabled values and basic arith-

metic operations are needed. Combining all results, the overall run time of the

Anderson-Darling k-sample test is given by O (N logN + kN)+O (N2)+O (1)

= O (N2 + kN).

The test statistic ADk depends on the difference of the empirical CDFs. In

contrast to the KS2 statistic not only the maximum difference is used, but the inte-

gral resp. sum over the whole range of x. The higher computational complexity is

caused by the calculation of Var [ADk], which is not depending on the data itself,

but on the size of the random samples. If many Anderson-Darling tests on ran-

dom samples of constant size are performed Var [ADk] has to be calculated only

once. This is exactly the situation when performing the truncation point detection

algorithm of the following sections on the output data of independent replications,

because ∀j : pj = p. The dominant factor in the calculation of the ADk statistic

itself is the sorting of the data. Therefore, the time complexity of the trunca-

tion point detection method remains the same, no matter whether the KS2 or the

ADk statistic is used. The use of ADk involves an additional calculation time of

Var [ADk] before the simulation is started. Compared to the whole run time of this

method, the additional calculation time is negligible.

Corollary 5.3.3 If k = 2 and Var [ADk] is known, than the worst case time com-
plexity of the Anderson-Darling k-sample test and the Kolmogorov-Smirnov 2-
sample test are equal.
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Proof The term O (N2) is the domination factor in the worst case time com-

plexity of the Anderson-Darling k-sample test, see Lemma 5.3.2. It is intro-

duced due to the calculation of Var [ADk]. If Var [ADk] is known, the dominat-

ing factor is O (N logN), which is introduced due to sorting the k random sam-

ples. This leads to a reduced run time of O (N logN + kN) and with k = 2 to

O (N logN + 2N) = O (N logN). This reduced run time equals the run time of

the Kolmogorov-Smirnov 2-sample test, see Lemma 5.3.1.

The empirical investigation of the accuracy in Section 5.3.3 shows that the

estimation of lF based on the statistic ADk is more accurate. Thus, we suggest

using ADk instead of KS2, see [38-Eic06].

5.4 Algorithmic Approach

In this section we show how the previously discussed 2-sample homogeneity tests

can be embedded in algorithmic approaches to implement Equation (5.1). We will

discuss three versions which focus on different performance measures such as pre-

cision, execution time and memory requirements. The basic idea of the algorithms

is already given by Equation (5.1) and they build a new class of truncation point

detection methods, which will be called the homogeneity-based truncation-point

estimator in the following sections. Older truncation point detection methods only

implement Equation (5.3) or Equation (5.4).

The aim is to determine the first index lF after which all following probability

distribution functions FXi
(x), with lF ≤ i, are (approximately) identical. Obvi-

ously the time horizon n of every simulation experiment is limited. Therefore it

is not possible to access “all” successive probability distribution functions. Only

the observed part of the steady state phase is accessible, i.e. lF ≤ i ≤ n. It is

essential that this observed part of the steady state phase is reasonably large to

avoid the determination of a misleading truncation point: lF (r + 1) = n with e.g.
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Figure 5.7: Simplified flowchart of an approach to detect lF .

r ≥ 10. Therefore the algorithm selects the size of the observed part of the steady

state as a (constant) factor r of the size of the transient period, i.e. the size of the

observed part of the steady state phase is always r-times larger than the so far

selected transient phase. This is demonstrated by a flowchart in Figure 5.7.

5.4.1 Basic and Most Precise Version

This version is the most basic one, disregarding efficient execution time or low

memory requirements. The algorithm is given in Listing 5.1 and was used in

[13-BE02] and [14-BE03]. The pseudocode in Listing 5.1 is based on ANSI C++,

but note that the operator := is an assignment and the operator = is the boolean

equality. The 2-sample homogeneity test is represented by the operator ' and

used to check equality in distribution of random samples of Xl and Xk. If the

null hypothesis of equality is accepted by the 2-sample homogeneity test the op-
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Listing 5.1: Pseudocode of the precise algorithmic approach.
0 i n t n := 0 ; / / 1 ≤ n <∞

i n t l := 0 ; / / 1 ≤ l < n
i n t r := a u t o S e l e c t ( ) ; / / rmin ≤ r ≤ rmax

i n t lmax := 105 ; / / l ≤ lmax

5 bool N o T e s t F a i l e d := f a l s e ;
whi le (¬N o T e s t F a i l e d ){

n := n + 1 ;
o b s e r v e (Xn ) ;
i f (0 6= n mod (r + 1) ) c o n t in u e ;

10 l := l + 1 ;
i f ( l > lmax) { p r i n t ( ’ F a i l i n g t o d e t e c t s t e a d y s t a t e . ’ ) ; break ;}
N o T e s t F a i l e d := t rue ;
f o r ( i n t k := l + 1 ; k ≤ n ; k := k + 1 ){

i f (¬(FXl
(x) ' FXk

(x)) ){
15 N o T e s t F a i l e d := f a l s e ;

break ;
}

}
}

erator ' returns true. The variables n, l and r are defined as usual. Here, we

neglect the index of the truncation point lF to avoid and indexed variable in the

pseudocode. The associated comments describe the valid range of these variables.

Note, that some of the variables are initialised outside their valid range. The vari-

able lmax defines the maximum range for a valid truncation point and is set to 105,

because in our examples all estimated truncation points are smaller than 2 · 104

observation indexes. The method autoSelect() is used to find a good value for r

depending on the initial part of the analysed output process and will be discussed

in Section 5.5. The method observe() collects one observation of each of the p

replications.

During each step of the algorithm the simulation horizon n is increased by one

and, starting with n = 1, a random sample of Xn is collected. If n is a multiple

of r+ 1, l is increased by one and Equation (5.1) is checked. When the algorithm

terminates l = {1, 2, 3, . . .} and n = l(r+ 1) are possible settings. Equation (5.1)
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is checked by performing 2-sample homogeneity tests on the random sample ofXl

compared with the random samples ofXl+1 toXl(r+1). Thus, the pairs {Xl, Xl+1},

{Xl, Xl+2}, . . ., {Xl, Xl(r+1)} are compared by 2-sample homogeneity tests. So, a

maximum number of i · r 2-sample homogeneity tests is performed when the loop

in Line 13 of Listing 5.1 is reached for the ith time during the execution of the

algorithm. If one of these tests fails l is not regarded as a valid truncation point and

the algorithm is continued. For a detailed discussion on this conservative approach

see Appendix A.6. Line 11 is an alternative stopping condition that prevents the

algorithm to run for ever if this approach is too conservative. Otherwise l fulfils

Equation (5.1) and the smallest possible truncation point is found.

Theorem 5.4.1 The worst case execution time complexity of the algorithm in List-
ing 5.1 is O (n2p log(p)), where n is the final simulation horizon and p is the
number of parallel replications.

Proof The loop in Line 6 of Listing 5.1 is executed n times. Therefore, Line 7

and Line 9 have a time complexity of O (n) in total. In Line 8 p observations are

collected, this leads to a time complexity of O (np) in total.

Line 10 to Line 19 are only executed if the current simulation horizon is a mul-

tiple of r + 1, this happens n
r+1

times. Thus, the total execution time complexity

of Line 10 to Line 12 is O
(

n
r+1

)
< O (n). During the ith execution of Line 10

to Line 19 the loop in Line 13 is performed at maximum ir times. The num-

ber of necessary 2-sample homogeneity tests, within the conditional statement in

Line 14, is given by

r

n
r+1∑
i=1

i = r
n

r+1
( n

r+1
+ 1)

2
=
rn2 + r2n+ rn

2r2 + 4r + 2
. (5.22)

The only maximum of Equation (5.22) subject to 1 ≤ r ≤ n − 1 is at r =

n+1
n−1

giving at most O
(

1
8
(n+ 1)2

)
= O (n2) 2-sample homogeneity tests. In

Lemma 5.3.1, Lemma 5.3.2 and Corollary 5.3.3 we proved that the execution of a
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2-sample homogeneity test can be done in O (p log(p)). Thus, the total execution

time of Line 14 is O (n2p log(p)).

Line 15 and Line 16 are processed at maximum n
r+1
− 1 times because they

lead to an interrupt of the loop in Line 13. Their execution time complexity is,

therefore, O
(

n
r+1
− 1
)
< O (n) in total.

The dominant factor of the time complexity of the algorithm in Listing 5.1 is

introduced by Line 14 and is O (n2p log(p)).

The amount of data, which has to be processed during a simulation exper-

iment, is usually large. Thus, as well as the worst case execution time of the

algorithmic approach its storage requirement is a quite important measure.

Theorem 5.4.2 The storage requirement of the algorithm in Listing 5.1 is O (np),
where n is the final simulation horizon and p is the number of parallel replications.

Proof In Line 8 of Listing 5.1 p real numbers are collected. We implicitly pre-

sume that these numbers are stored because they are used in Line 14 when execut-

ing the 2-sample homogeneity test. In the loop in Line 13 we access the indexes

l and k, with l + 1 ≤ k ≤ n. Thus, the data of all these indexes has to be stored.

Only the data of the indexes with i < l can be deleted. Therefore, the storage

requirement is (n− l + 1)p which is O (np).

In this algorithmic approach l is always shifted by only one observation index

if a 2-sample homogeneity test fails. Furthermore, Xl is tested against all avail-

able Xk, with l+ 1 ≤ k ≤ n. This is why the algorithmic approach of Listing 5.1

is mostly precise. One disadvantage of this approach is that we approximate the

final value of l strictly form below. Because all 2-sample homogeneity tests op-

erate on a certain significance level α it is likely that the estimated l is smaller

than the theoretically best choice of l. In this situation subsequent estimators,

which assume identically distribution, would still be biased. Theorem 5.4.1 and

Theorem 5.4.2 show that the necessary resources for the execution are high. We
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recommend to use this algorithmic approach if the time to produce an observation

by the simulation is significantly large.

5.4.2 Time Efficient Version

In the previous section we discussed an algorithmic approach that aims for precise

estimation of l. In this section we will show that this is possible with a significantly

lower execution time complexity.

Listing 5.2 shows the pseudocode of a time efficient algorithmic approach,

where for convenience some special notation is used. Using the operators +, −, /

and := in conjunction with random variables Xk or S, see lines 4, 10, 14 and 16,

means to use these operators on each component of the relevant sorted random

sample separately. By S we denote a random sample {si}pi=1 of size p that is

the sum of all ordered sequences which are not part of the transient period. Let

{xik}pi=1 be the observed random sample of Xk and let {yik}pi=1 be the associated

sorted sequence. S is then given by{
si =

n∑
k=l+1

yik

}p

i=1

. (5.23)

New observations are added, see Line 10, whereas observations of the transient

period are subtracted from S, see Line 14. Dividing each component of {si}pi=1

by the number of addends results in an estimate of FX∞ (x):

F̂X∞ (x) = FS′ (x) with S ′ given by
{

si

n− l

}p

i=1

. (5.24)

The operator ' in Line 17 and Line 21 refers to the 2-sample homogeneity test.

The procedure uniform(a,b) delivers a uniform distributed integer random number

between a and b used as index.

This algorithmic approach is similar to the one shown in Listing 5.1. However,

instead of comparing Xl with all available following random samples it is com-

pared with the averaged and standardised random sample of S ′, see Line 17. In
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Listing 5.2: Pseudocode of the runtime efficient algorithmic approach.
0 i n t n := 0 ; / / 1 ≤ n <∞

i n t l := 0 ; / / 1 ≤ l < n
i n t r := a u t o S e l e c t ( ) ; / / rmin ≤ r ≤ rmax

i n t lmax := 105 ; / / l ≤ lmax
S := 0 ; S′ := 0 ; / / averaged random samples

5
bool N o T e s t F a i l e d := f a l s e ;
whi le (¬N o T e s t F a i l e d ){

n := n + 1 ;
o b s e r v e (Xn ) ;

10 S := S + Xn ;
i f (0 6= n mod (r + 1) ) c o n t in u e ;
l := l + 1 ;
i f ( l > lmax) { p r i n t ( ’ F a i l i n g t o d e t e c t s t e a d y s t a t e . ’ ) ; break ;}
S := S −Xl ;

15 S′ := S/(n− l) ;
N o T e s t F a i l e d := t rue ;
i f (¬(FXl

(x) ' FS (x)) ) N o T e s t F a i l e d := f a l s e ;
f o r ( i n t k := 1 ; k ≤ r ; k := k + 1 ){

i f (¬N o T e s t F a i l e d ) break ;
20 i n t u :=un i fo rm ( lk + 1 , l(k + 1) ) ;

i f (¬(FXl
(x) ' FXu

(x)) ) N o T e s t F a i l e d := f a l s e ;
}

}

addition Xl is compared with a random selection of r additional random samples

Xu, see Line 21. These changes have a significant influence on the execution time

complexity because here the maximum number of needed 2-sample homogeneity

tests during each step of the algorithm is constant.

Theorem 5.4.3 The worst case execution time complexity of the algorithm in List-
ing 5.2 is O (np log(p)), where n is the final simulation horizon and p is the num-
ber of parallel replications.

Proof The run time of a single execution of Line 8 and Line 11 is O (1) and of

Line 9 and Line 10 it is O (p) because p parallel replications are used. The while-

loop in Line 7 is executed n times before the algorithm stops, so the run time of

this part of the algorithm is O (np).

A single execution of Line 12 and Line 16 can be done in O (1). A single

execution of Line 14 and Line 15 can be done in O (p). To execute Line 17 a
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run time of O (p log(p)) is needed because a 2-sample homogeneity test has to be

performed, see Lemma 5.3.1, Lemma 5.3.2 and Corollary 5.3.3. Because of the

condition in Line 11 this part of the algorithm is executed only n
r+1

times. There-

fore, the run time of this part of the algorithm is O
(

n
r+1

p log(p)
)
< O (np log(p)).

A single execution of Line 19 and Line 20 needs only a minor run time of

O (1). The 2-sample homogeneity test in Line 21 can be done in O (p log(p)).

The for-loop in Line 18 is executed at maximum r times, therefore, the run time

of one complete for-loop in each step of the algorithm is r · O (p log(p)). All in

all n
r+1

for-loops have to be performed. Therefore, the run time of this part of the

algorithm is n · r
r+1
·O (p log(p)) which leads to O (np log(p)).

Combining all results, the run time of the algorithm is O (np)+O (np log(p))+

O (np log(p)) = O (np log(p)).

Theorem 5.4.3 shows that the use of FS′ (x) as an estimate of FX∞ (x) reduces

the runtime by the factor n. As we will see in the following corollary, this has no

impact on the storage requirement.

Corollary 5.4.4 The storage requirement of the algorithmic approach in List-
ing 5.2 is equal to the one of Listing 5.1.

Proof To calculate S the data of the observed part of the steady state phase has to

be stored, see Line 10 and Line 14 in Listing 5.2. These are the indexes l ≤ i ≤ n.

Only the data of the observation indexes i < l can be deleted. The amount of this

data is (n − l + 1)p which is O (np). This is equal to the storage requirement of

Listing 5.1, see Theorem 5.4.2.

By reducing the execution time complexity we solved one main problem of

the algorithmic approach in Listing 5.1. In [41-EMP05b] is shown that this sig-

nificant reduction of the time complexity has nearly no impact on the precision of

the estimate l. However, the other disadvantages still remain. Because the esti-

mate l approaches the theoretically best choice of l from below it is quite likely
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that the final estimate of l is smaller than the theoretically best choice. The stor-

age requirements are still high. We recommend this algorithmic approach if it

is known that the computer can handle the amount of output data of the parallel

replications.

5.4.3 Memory Efficient Version

In this section we will focus on the remaining problems of the previously intro-

duced algorithmic approaches. The algorithmic approach that is presented in this

section will have constant storage requirement. The main idea to achieve this

goal is to store only a representative part of the output data. Furthermore, this

algorithmic approach does not aim to estimate l as close as possible to the the-

oretically best truncation point. Here, the aim is to estimate a truncation point l

that is not smaller than the theoretically best truncation point. This choice of l

practically satisfies Equation (5.1) closer than an estimate of l that is too small,

but it is maybe more wasteful.

In this algorithmic approach we split the output sequence into r+ 1 non over-

lapping, equally sized and consecutive batches. During the search for a valid esti-

mate of l we increase the size of the batches. The batch size is always increased

by doubling the current batch size and so the algorithm is jumping forward geo-

metrically. One observation index is chosen of every batch as representative. This

selection is done randomly to avoid the chosen observation indexes having the

same distance, because this could lead to bad performance if the output process is

periodic with a constant cycle length. This approach requires the handling of some

additional index pointers, which makes its source code quite long, see Listing 5.3.

batchNo is a pointer to one of the r+1 batches. Its valid range is 0 ≤batchNo≤ r.

It is used to mark the batch which is currently under observation.

batchSize is the number of observations in each batch. It is doubled after each
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step of the algorithm. During the kth step of the algorithm it is 2k−1.

posInBatch is a pointer to an observation index within a batch. Its valid range is

1 ≤posInBatch≤batchSize although it is initialised with zero. It is used to

mark the position within the batch that is currently observed.

selectedPosInBatch is a pointer to the representative observation index within

a batch. Its range is identical to the range of posInBatch and it marks the

representative observation index of the current batch.

In contrast to the previous algorithms we do not implicitly assume that all Xi are

stored after their collection. Here, the random sample of Xi is only stored by

the conditional command in Line 16 of Listing 5.3. b[i] is an array that contains

observation, e.g. as floating point numbers. Its “horizontal” size is r + 1 entries,

see Line 8. Each entry is a random sample obtained from p parallel replications,

so p is its “vertical” size. The overall size of b is p(r + 1).

Listing 5.3 can be separated into three parts. In the first part, Line 12 to

Line 22, output samples are collected until all batches are “filled”. The pointer

posInBatch is increased every time a new sample is collected. The currently ob-

served random sample is stored if posInBatch equals selectedPosInBatch. If pos-

InBatch reaches batchSize the next batch is taken into account. This is repeated

until all necessary data is collected. In the second part, Line 24 to Line 35, Equa-

tion (5.1) is checked by performing 2-sample homogeneity tests on the stored

random samples b[0] and b[i] with 1 ≤ i ≤ r. If the null hypothesis of no

2-sample homogeneity test is rejected l is set to the current simulation horizon

n. Thus, possible truncation points are given by l = n = 2k−1(r + 1) =

{r + 1, 2(r + 1), 4(r + 1), . . .}. This might be wasteful but it guarantees that

l is deep in the steady state phase. The third part, Line 37 to Line 56, prepares b

for the next step of the algorithm. Because the batch size is doubled, every two

consecutive batches are combined. We have to separate between the situations
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Listing 5.3: Pseudocode of the memory efficient algorithmic approach.
0 i n t n := 0 ; / / 1 ≤ n < ∞

i n t l := 0 ; / / 1 ≤ l < n
i n t r := a u t o S e l e c t ( ) ; / / rmin ≤ r ≤ rmax

i n t batchNo := 0 ; / / 0 ≤batchNo≤ r
i n t b a t c h S i z e := 1 ; / / 1 ≤ b a t c h S i z e < ∞

5 i n t p o s I n B a t c h := 0 ; / / 1 ≤p o s I n B a t c h≤ b a t c h S i z e
i n t s e l e c t e d P o s I n B a t c h := 1 ; / / s e e p o s I n B a t c h
i n t lmax := 106 ; / / l ≤ lmax
random sample b[r + 1] ; / / −∞ < b[i] < ∞

10 bool N o T e s t F a i l e d := f a l s e ;
whi le (¬N o T e s t F a i l e d ){

n := n + 1 ;
i f (n > lmax) { p r i n t ( ’ F a i l i n g t o d e t e c t s t e a d y s t a t e . ’ ) ; break ;}
o b s e r v e (Xn ) ;

15 p o s I n B a t c h :=p o s I n B a t c h+1 ;
i f ( p o s I n B a t c h= s e l e c t e d P o s I n B a t c h ) b [ batchNo ] := Xn ;
i f ( p o s I n B a t c h= b a t c h S i z e ){

batchNo :=batchNo+1 ;
p o s I n B a t c h := 0 ;

20 s e l e c t e d P o s I n B a t c h :=un i fo rm (1 , b a t c h S i z e ) ;
}
i f ( batchNo≤ r ) c o n t in u e ;

N o T e s t F a i l e d := t rue ;
25 f o r ( i n t i := 1 ; i ≤ r ; i := i + 1 ){

i f (¬(Fb[0] (x) ' Fb[i] (x) ){
N o T e s t F a i l e d := f a l s e ;
break ;

}
30 }

i f ( N o T e s t F a i l e d ){
l := n ;
c o n t in u e ;

35 }

b a t c h S i z e := b a t c h S i z e ·2 ;
bool r a t i o I s E v e n := (0 = r mod 2 ) ;
i n t h a l f ;

40 i f ( r a t i o I s E v e n ) h a l f = ( r a t i o /2)− 1 ;
e l s e h a l f = ( r a t i o−1)/2 ;

b[0] := b[1] ;

45 f o r ( i n t i = 1 ; i ≤ h a l f ; i := i + 1 ){
i f ( un i fo rm (0 ,1 )< 0.5 ) b[i] := b[i · 2] ;
e l s e b[i] := b[i · 2 + 1] ;

}
batchNo := h a l f +1 ;

50
s e l e c t e d P o s I n B a t c h :=un i fo rm (1 , b a t c h S i z e ) ;
i f ( r a t i o I s E v e n ){

i f ( s e l e c t e d P o s I n B a t c h≤ b a t c h S i z e /2 ) b[batchNo ] := b[batchNo ·2] ;
p o s I n B a t c h := b a t c h S i z e /2 ;

55 }
e l s e p o s I n B a t c h := 0 ;

}
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where the number of batches r + 1 is even or odd.

Theorem 5.4.5 The worst case execution time complexity of the algorithm in List-
ing 5.3 is O (np), where n is the final simulation horizon and p is the number of
parallel replications.

Proof The loop in Line 11 of Listing 5.3 is executed n times. Line 12, Line 15

and Line 17 to Line 22 cause only a minor runtime of O (n) in total. In Line 14 p,

observations are collected which leads to a runtime of O (np) in total. In Line 16

p, observations are stored. This is done once for all r + 1 batches for all k steps

of the algorithm. Thus, the runtime of this line is O (krp).

Because of the condition in Line 22 consecutive lines are executed only once

for every step of the algorithm. Note, that n = 2k−1(r + 1). Therefore, k =

log
(

n
r+1

)
+ 1 steps are performed to reach the final simulation horizon n. The

most interesting lines beyond Line 22 are Line 26, Line 46 and Line 47. All other

lines cause only a minor runtime.

In Line 26, r 2-sample homogeneity tests are executed in every step. A 2-

sample homogeneity test can be done in O (p log(p)), see Lemma 5.3.1, Lemma 5.3.2

and Corollary 5.3.3. Thus, the total runtime of all 2-sample homogeneity tests is

O (krp log(p)).

In Line 46 and Line 47 less than r random samples of size p are moved in the

memory in every step. This causes a runtime of O (krp).

Combining all results we receive a runtime of O (np+ krp log(p)). We can

replace O (k) = O
(
log( n

r+1
)
)
< O (log(n)). Because r is a positive constant

and r << n usually holds, we can conclude O (np+ rp log(p) log(n)) = O (np).

This proof shows that, surprisingly, the collection of the output data in Line 14

is the most time consuming part of the algorithm in Listing 5.3. Other parts of the

algorithm must only be taken into account if a truncation point is found already



5.4. ALGORITHMIC APPROACH 111

after a few steps, i.e. if k is small and, therefore, r << n does not hold. However,

in this situation the runtime of the algorithm might not be of interest at all.

This algorithmic approach uses the least time for any given step because the

number of 2-sample homogeneity tests is constant, given by r. It takes the least

number of steps to terminate because checkpoints are spaced geometrically with

2k−1(r + 1). The geometrical spacing of checkpoints leads to a truncation point

that is deeper in steady state. In the worst case, this truncation point is twice as

large as the one determined by Listing 5.1 and Listing 5.2. The computational

burden of the additional simulation needs to be accounted for, however, a factor 2

is negligible for the runtime in sense of the O (.)-notation.

Theorem 5.4.6 The storage requirement of the algorithm in Listing 5.3 is O (rp),
where r is the selected ratio between the transient phase and the observed part of
the steady state phase and p is the number of parallel replications.

Proof All the variables n, l, r, batchNo, batchSize, posInBatch and selectedPos-

InBatch need O (1) memory. The array b can store r + 1 random samples of size

p. When a random sample of Xi is collected in Line 14 it is only stored, if this is

explicitly stated by Line 16. Because r and p are constant parameters during the

execution of Listing 5.3 the memory requirements are constantly O (rp).

Theorem 5.4.5 and Theorem 5.4.6 show that the algorithmic approach of List-

ing 5.3 is most efficient. It can be used if a large truncation point is expected be-

cause its storage requirements are constant and its runtime is superior over other

algorithmic approaches. The estimated l is not as small as possible because this

algorithm is shifting l with geometrically growing step size. Furthermore, the fi-

nal estimate of l is set to the simulation horizon n. This makes this approach more

wasteful than the algorithms of Listing 5.1 and Listing 5.2. However, it fulfils

Equation (5.1) because the estimate l is deeper in steady state than necessary. The

other algorithms estimate l as small as possible but tend to underestimate it. If the

influence of the initial state is only present up to a well defined observation index,
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the estimate l of algorithm of Listing 5.3 might even be able to fulfil Equation (5.1)

with strict equality instead of approximate equality.

5.5 Parameterisation

The transient behaviour of a simulation output process {Xi}∞i=0 can have many

different forms. Therefore, it is almost impossible to find a parameterisation of

an estimator that works well for all kinds of output processes. If an estimator

is limited to a certain class of models, e.g. queueing models or time series, this

might be possible. The purpose of automated and sequential simulation is to de-

liver estimates with a small error for a previously unknown process. This implies

that the analyst cannot provide any information about {Xi}∞i=0 and has no further

knowledge of a valid parameterisation of an estimator. If there is no standard pa-

rameterisation available and the analyst cannot give a valid parameterisation the

parameters of the estimator must be set automatically.

5.5.1 Parameter r

The only critical parameter of the algorithms presented in Listing 5.1, Listing 5.2

and Listing 5.3 is the ratio r between the length of the transient phase and the

length of the observed part of the steady state phase. If r is chosen too small

the algorithms may overlook transient behaviour. This is especially critical if the

convergence of the output process towards its steady state behaviour is very slow.

In general r should not be smaller than a certain threshold rmin. If r is chosen too

big the algorithms will require an unnecessarily long runtime. In general r does

not need to be greater than a value rmax. As with r itself, optimum values for rmin

and rmax depend on the output process.

r should be chosen large enough to overcome the serial correlation of the

output process. The serial correlation coefficients ck of a single server queue are

analysed in [31-Dar68] and the calculation of ck for the M/M/1 queue is shown.
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Listing 5.4: Pseudocode of the automated selection of parameter r.
0 i n t r := 0 ; / / r = 0 or rmin ≤ r ≤ rmax

i n t rmin := 10 ; / / 1 ≤ rmin ≤ rmax

i n t rmax := 1000 ; / / rmin ≤ rmax <∞
i n t n := 0 ; / / 1 ≤ n <∞

5 whi le (n− 1 ≤ rmax ){
n := n + 1 ;
o b s e r v e (Xn ) ;
i f (n− 1 < rmin ) c o n t in u e ;
i f (¬(FX1 (x) ' FXn (x)) ){

10 r := n− 1 ;
break ;

}
}
i f (r = 0 ) p r i n t ( ’No t r a n s i e n t b e h a v i o u r d e t e c t e d . ’ ) ;

Comparing
∑kmax

k=0 ck for kmax = 10i with kmax =∞ should give a rough idea of

how to choose rmin and rmax. In Table 5.2 the results of an M/M/1 queue at low

and high traffic intensity ρ is shown. The value of kmax is set to different orders

of magnitude. For ρ = 0.5 most of the correlation is within a lag of kmax = 101,

therefore r should not be smaller than rmin = 10. And for ρ = 0.9 most of the

correlation is within a lag of kmax = 103, thus we set rmax = 103. All experiments

in Section 5.6 are done with this setting of rmin and rmax leading to good results.

Because it is possible to find a parameterisation of rmin and rmax that is valid for

many models, these parameters are not critical.

To find a valid choice of r itself, we compare FX1 (x) with FXn (x) for increas-

ing values of n with respect to the limits rmin ≤ r ≤ rmax. A valid ratio r = n−1

is found if FX1 (x) 6= FXn (x) holds, because the transient behaviour will not be

overlooked. If no r ≤ rmax can be found, we assume that the process is stable

kmax 100 101 102 103 104 ∞
ρ = 0.5 1.778 4.598 5.333 5.333 5.333 5.333
ρ = 0.9 1.991 10.521 71.858 178.454 181.818 181.818

Table 5.2: Sum of the first kmax correlation coefficients of the M/M/1 queue.
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right from the beginning. Pseudocode of this approach is given in Listing 5.4.

This algorithm is used to initialise the parameter r for the algorithms in List-

ing 5.1, Listing 5.2 and Listing 5.3. Furthermore, we assume that all observed

random samples of Xn, see Line 8, are stored and reused by the truncation point

detection algorithm. Especially for the algorithm in Listing 5.3 this data can be

used to initialise the array b. The runtime and the storage requirements of the

algorithm in Listing 5.4 are obviously lower than the runtime and the storage re-

quirements of the truncation point detection algorithms.

5.5.2 Parameters of the Homogeneity Test

The previously discussed homogeneity tests operate at a certain significance level

α. We do not consider α as a critical parameter because e.g. α = 0.05 is a valid

setting for all kinds of output processes. For the multiple comparisons during one

step of the algorithms we chose the most conservative approach by demanding

that no 2-sample homogeneity test should reject the null hypothesis. Compare

with the discussion in Appendix A.6.

Another parameter of the homogeneity tests is the size p of the random sam-

ples. Here, this is given by the number of parallel replications. Figure 5.6 in

Section 5.3.3 shows the dependence of the homogeneity tests on p. We can see

that the graphs flatten out at about p = 100, which is therefore a good setting. We

also see that p < 30 or even p < 50 is not a good choice, the estimated truncation

point is too far away from its optimum. Because of these observations it is possi-

ble to choose a setting of p, e.g. p = 100, that is valid for many kinds of output

processes and p is not a critical parameter.



5.6. VALIDATION AND COMPARISON 115

5.6 Validation and Comparison

In this section experiments on the previously introduced truncation point detection

methods are done. The experiments are based on a large variety of models to cover

many different kinds of output processes. The simulation results are compared

with the results of other well known methods, which are discussed next. For a

survey on this topic see [99-Paw90].

Crossing of the Mean is not a statistical test in the classical sense, i.e. no null

hypothesis is tested. We follow [99-Paw90] and regard it as a rule of thumb. Let

X̄k =
1

k

k∑
j=1

Xj (5.25)

be the mean of the first k observations X1 to Xk. Define

cj,k =

1 if(Xj > X̄k and Xj+1 < X̄k) or (Xj < X̄k and Xj+1 > X̄k),

0 else,
(5.26)

with 1 ≤ j ≤ k − 1. The value

ck =
k−1∑
j=1

cj,k (5.27)

shows how many times the sequence {X1, . . . , Xk} is crossing the mean X̄k. In

[49-Fis73] is pointed out that this rule “may prove useful in practise for assessing

the dilution over time of bias due to initial conditions”. A test can be applied by

checking the condition ck ≥ c, where c is a critical value defined by the analyst. If

the condition is not fulfilled for k, another observation is added to the sequence of

data and the test is performed for k + 1. As pointed out before, this test does not

check a null hypothesis, therefore, no significance level is given. This makes the

selection of the critical value c difficult. An optimal setting for c depends on the

output process itself. In [54-GAM78] the performance of this test is evaluated for

examples and the critical value is recommended to be c = 25. We used this setting
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for all our experiments. The crossing of the mean rule focuses on a constant mean,

so we can say that it is a realisation of Equation (5.3).

Combined stationarity tests for proving if a time series of a fixed size has a

transient behaviour are given in [64-GSS94] and [22-CDL+92] and the earlier

publications [117-Sch82] and [118-SST83]. The earlier published tests are based

on the assumption that the transient behaviour of the output process can be de-

scribed by Equation (5.8). As we already pointed out in Section 5.2, this assump-

tion is quite strict because only a displacement of the distribution (addition of a

value) is covered. In the more recent publications Equation (5.8) is replaced by

just assuming a transient mean function defined by

µi = E [Xi] = µ(1− ai), (5.28)

where the ai’s are constants. This is more general because no stationarity of X ′
i

is assumed anymore. However, in [64-GSS94] it is additionally assumed that the

variance of the sample mean during the initial transient (i < lE) is greater than

the variance of the sample mean during steady state (i ≥ lE). This does not

hold in general, and especially for queueing systems this assumption about the

variance is critical. Compare this with the discussion of the convergence of the

response time of an empty and idle initialised M/M/1 queue in Section 5.2. In this

situation Var [Ri] < Var [Ri+δ] holds for δ > 0, see Figure 5.1(a). Furthermore,

Equation (5.28) does not cover the situation of a constant mean but a transient

process variance, i.e. E [Xi] = E [Xi+δ] but Var [Xi] 6= Var [Xi+δ]. This might

not cause a problem when the only measure of interest is E [X∞]. It does cause a

problem when e.g. quantiles of the distribution function FX∞ (x) are of interest.

Examples of this kind of output processes are given later in this section and they

are used for our experimental studies.

In contrast to crossing of the mean the combined stationarity tests are based

on the variance of the sample mean. The sample of output data with fixed size

n is split into two windows X1, . . . , Xn′ and Xn′+1, . . . , Xn. The variance σ2
1
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of the sample mean of the first window (i < n′) is tested against the variance

σ2
2 of the second window (i ≥ n′). Different estimators for σ2

1 and σ2
2 are dis-

cussed in [64-GSS94], such as the batch means estimator, the area estimator, the

maximum estimator and combinations of these. Because of the transient mean

function σ2
1 > σ2

2 is assumed. Therefore, σ2
1/σ

2
2 is tested against the F-distribution

at 1 − α and parameters κ1 and κ2. α is the significance level and κ1 and κ2 are

the degrees of freedom in the estimation of σ2
1 and σ2

2 . As already discussed, we

cannot assume this is valid for all possible output processes. For the area and the

maximum estimator, see [22-CDL+92], which are part of the combined station-

arity tests, the asymptotic variance needs to be estimated. We used the spectral

variance estimator, which is described in [72-HW81] and in [93-MEP04], with a

constant window size of 200 observations. This window was placed at the end

of our original sequence. The combined method is proposed for the purpose of

mean value analysis. However, we will show that this method can provide valid

estimates of lV , see Equation (5.4), for selected examples and if the test statistic

σ2
1/σ

2
2 is adjusted to σ2

2/σ
2
1 or even to a two sided test.

Our focus is on sequential output analysis. Therefore, we embed this statistical

test in an algorithmic approach, as it was done with the homogeneity test in Sec-

tion 5.4. Firstly, we introduce a distance between the two windows. This may shift

the second window deeper into the steady state phase and the difference between

σ2
1 and σ2

2 might be more obvious. Secondly, if we fail to find a valid truncation

point we always discard the oldest observation and add a new observation Xn+1.

In this way the analysed sequence has a constant size. However, the shift of only

one observation leads to a large computational effort. Our focus here is to receive

a precise truncation point, the complexity of the runtime is a secondary issue.

Because we are interested in automated analysis, we are looking for a set of

parameters that is valid for a wide range of output processes. Furthermore, we

assume that there is no additional information about the analysed model than the
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observations itself. We should keep in mind, that universality is one of the main

advantages of simulation. If more information is given about the analysed model,

it might make more sense to use a different analysis technique than simulation. In

[22-CDL+92] some settings for the parameters are evaluated on examples. Based

on those investigations we choose 16 batches in the first and second window and

a distance of 103 observations between both windows. The correlation within the

output sequences of our various test models is very different, therefore, we were

not able to choose an optimal batch size m that is valid for the whole set of our

test models. Depending on the model we used m = {3, 10, 50, 100, 200}, if not

stated explicitly we set m = 10. All our experiments are performed at α = 0.05.

The Homogeneity-Based Truncation-Point Estimator is described in Section 5.4.

To obtain a precise estimate of the truncation point Listing 5.1 is used in Sec-

tions 5.6.1, 5.6.2, 5.6.3 and 5.6.4. The ratio between the current transient obser-

vations and the current observed part of the steady state is chosen automatically

by the algorithm itself, see Section 5.5. The significance level of the homogeneity

test, i.e. the Anderson-Darling test, is set to α = 0.05 for all experiments.

In the experiments in Section 5.6.7 we have a different aim. Here, our aim

is not to detect a precise truncation point but to choose a truncation point large

enough, so that the data is identically distributed, but without being too wasteful.

We will see that in this case it is not necessary to use exact versions of the trunca-

tion point detection methods. Here, we apply Listing 5.3. Again, for this method

the ratio between the so far detected transient observations and the so far observed

part of the steady state is chosen automatically by the algorithm itself and we used

α = 0.05. Results of this method are tested against the results of a combination

of the crossing of the mean rule and Schruben’s test, see [118-SST83], which

is implemented in Akaroa2, see [47-EPM99], and we use the standard settings

of this software tool. These are: 25 crossings of the mean; γ = 0.5; γv = 2;

varianceLength= 100; α = 0.05 and safetyFactor= 1. For further details on this
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parameters the reader is referred to the original publications.

All Experiments are based on at least 104 replications. This means that for

the crossing of the mean rule and the combined stationarity test all experiments

are repeated at least 104 times. We will see that this leads to smooth graphs of

empirical distribution functions. Here, the homogeneity-based truncation-point

estimator is always based on 100 replications. Therefore, experiments with this

method are repeated at least 100 times to make these results comparable to the

results of the other methods. The results are used to calculate the mean, standard

deviation and more derived measures, as well as the empirical CDF and a his-

togram of the density function. We use the random number generator described

in [87-LSCK02]. Distribution functions are constructed with the help of the soft-

ware library dcdflib, which implements methods of [1-AS65]. If the evolution

of a process is depicted it is always based on 101 replications and the quantiles

q = {0.066, 0.184, 0.332, 0.5, 0.668, 0.816, 0.934}, see [40-EMP05a]. Details to

the depiction of quantiles evolving over time can be read in Chapter 4.

If the bias of subsequent estimators is mentioned in the following sections, we

refer to the remaining initialisation bias after deleting a sequence of data in the

beginning. If the data beyond the truncation point is not identically distributed

this causes bias in the estimators, which assume identically distributed data.

5.6.1 Basic Models

The first experiments are done by analysing the output data of a model with no

initial transient phase, and of two unstable models. Any truncation point detection

method should return l = 1 (lF = lE = lV ) for the first model and it should be

able to recognise that the unstable models are not converging towards a steady

state measure, i.e. lF = lE = ∞ for the second and lF = lV = ∞ for the third

model.

Figure 5.8 is a plot of a selection of quantiles of the output process evolving
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Figure 5.8: Quantiles of the Gaussian white noise process evolving over time.

over time. The first model is the Gaussian white noise process

Xi = Ψi, (5.29)

where the CDF of every Ψi is given by the standard normal distribution FΨi
(x) =

N (x; 0, 1). FΨi
is constant over time, therefore, the output process is stable from

the beginning. The theoretically best truncation point is at l = 1. Despite of

small changes at low frequency, no general trend can be seen. Table 5.3 shows

the result of the crossing of the mean rule, the combined stationarity test and the

homogeneity-based truncation-point estimator. Mean is the average of all simu-

lation results. Standard error of the mean is the standard deviation divided by

the square root of the number simulation results. Standard deviation is the square

root of the variance of all simulation results. Due to the selection of the seed of

our random number generator the results of each experiment can be regarded as

crossing combined homogeneity
mean 50.33 ± 0.07 1.78 ± 0.04 1.37 ± 0.08

std. dev. 6.99 4.46 0.84
min. 31 1 1
max. 74 105 7

Table 5.3: Simulation results of the Gaussian white noise process.
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Figure 5.9: Quantiles evolving over time of the unstable model with increasing
mean.

independent and identically distributed. Thus, the calculation of the variance can

be done as usual. Minimum and maximum are the lowest and the highest result.

These measures are based on the distribution function of the truncation point es-

timator and show how precise a truncation point can be estimated by a method.

The results of the homogeneity-based truncation-point estimator are best, in the

sense that the mean is closest to l = 1 and the standard deviation is smallest. The

results of the combined stationarity test are similar, even though the mean and the

standard deviation are a little bit bigger. The crossing of the mean rule could not

detect the truncation point precisely, and even the minimum of all results is too

high.

The second output process is unstable, because its mean value is constantly

increasing with simulation time.

Xi = (c · i) + Ψi, (5.30)

where c = 0.1 is a constant slope. Figure 5.9 shows that in this case the quantiles

of the output process are displaced. The displacement is increasing over time.

Longer simulation experiments would show even higher values. In Table 5.4 the

simulation results of the unstable model with increasing mean are listed. The
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percentage unstable shows for how many runs the detection method recognised

that the model is unstable. All methods have been set to assume that the model is

unstable if the truncation point is greater than a certain threshold. Such a threshold

is needed as otherwise they would try to find a truncation point without being able

to fulfil the stopping condition and run forever. Usually we set this threshold at

105 observations, however, to avoid long execution times of the simulation runs

we reduced this parameter for the experiments with unstable models. Here, all

methods assume that the model is unstable if the truncation point is greater than

103. The crossing of the mean rule and the homogeneity-based truncation-point

estimator are able to detect that the output values are not converging to a steady

state value. We clearly see that the combined stationarity test is not able to detect

this. The two estimated values for the sequence variance σ2
1 and σ2

2 , which are

calculated in the first and the second window of the combined stationarity test,

are identical, because the variance estimator is independent of the displacement.

Therefore, the combined stationarity test is not sensitive for a displacement if it

appears in both windows.

The third output process is unstable, because its variance is constantly increas-

ing with increasing simulation time.

Xi = (c · i) ·Ψi, (5.31)

where c = 0.1 is a constant slope. Figure 5.10 shows that in this case the quantiles

of the output process are stretched. The stretch is increasing over time. Longer

crossing combined homogeneity
unstable 96% 0% 100%

mean - 1.114 ± 0.005 -
std. dev. - 0.46 -

min. - 1 -
max. - 7 -

Table 5.4: Simulation results of the unstable model with increasing mean.
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Figure 5.10: Quantiles evolving over time of the unstable model with increasing
variance.

simulation experiments would show even higher values. Usually the combined

stationarity test assumes that the sequence variance is smaller in the steady state

phase than during the transient phase, i.e. σ2
1 > σ2

2 . Here, we know that σ2
1 < σ2

2

and we adjusted the combined stationarity test by testing σ2
2/σ

2
1 against the F-

distribution. Table 5.5 shows, that the adjusted combined stationarity test and the

homogeneity-based truncation-point estimator were able to detect the instability

of the model. Not surprisingly, the crossing of the mean rule failed. This method

assumes that an output process is stable if the mean is constant over time. The

assumption does not hold for this model.

crossing combined homogeneity
unstable 0% 99% 100%

mean 52.81 ± 0.08 - -
std. dev. 7.51 - -

min. 33 - -
max. 91 - -

Table 5.5: Simulation results of the unstable model with increasing variance.
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Figure 5.11: Evolution of quantiles of an output process with parabola displace-
ment in the beginning.

5.6.2 Transient Mean Value

In this section experiments are done with transient output processes. All output

processes converge towards a steady state distribution. In addition, during the

transient phase E [Xi] 6= E [Xj] holds if i 6= j. This condition is important for all

truncation point detection methods, which are based on the convergence of E [Xi].

The first process shows an initial quadratic displacement:

Xi =

Ψi + k
l2

(l − i)2 if i < l,

Ψi else,
(5.32)

where k is the offset. It has got a well defined truncation point l, where lF = lE =

l and lV = 1. E [Xi] is governed by a parabola for i < l. This can be seen in

crossing combined homogeneity
mean 198.4 ± 0.2 61.71 ± 0.07 90.2 ± 0.3

std. dev. 20.3 7.12 3.39
min. 122 44 81
max. 252 140 104

Table 5.6: Simulation results of the output process with parabola displacement in
the beginning.



5.6. VALIDATION AND COMPARISON 125

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0  100  200  300  400  500  600  700  800  900  1000

Figure 5.12: Evolution of quantiles of a geometrical ARMA(5, 5) process.

Figure 5.11. In this example and for all simulation experiments with this model

we chose k = 10 and l = 100. We performed the crossing of the mean rule, the

combined stationarity test and the homogeneity-based truncation-point estimator

on this output process. The simulation results are listed in Table 5.6. The results of

the homogeneity-based truncation-point estimator are closest to the theoretically

best result. Furthermore, the standard deviation of these results is smallest, which

indicates a stable estimate. However, the majority of the results is smaller than

the theoretically best truncation point. If the truncation point is too small, the data

will still be biased. The coverage of estimators in a subsequent analysis will be

reduced by this. The impact of this bias is even stronger when using the combined

method. All simulation results of this method are smaller than the theoretically

best truncation point. All simulation results of the crossing of the mean rule are

beyond the theoretically best truncation point. From point of view of an accurate

truncation point detection, the results of this method are the worst. However, the

results are already deep in the steady state phase and thus a bias on subsequent

estimators is avoided in this example.

The next output process is given by a geometrical ARMA(5, 5) process, see
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Appendix A.2.

Υ
(5)
i = 1 + Ψi +

5∑
j=1

1

2j
(Υ

(5)
i−j + Ψi−j). (5.33)

We chose Υ
(5)
i = 0 for i ≤ 0. In Figure 5.12 the evolution of the quantiles of this

process can be seen. E
[
Υ

(5)
i

]
is converging towards the value E

[
Υ

(5)
∞

]
= 32. Af-

ter about 200 observation indexes the process seems to be stable. For this process

we adjusted the test statistic of the combined stationarity test. We tested σ2
1/σ

2
2 and

σ2
2/σ

2
1 against the F-distribution, both at 1− α

2
. For this 2-sided test only one crit-

ical value of the F-distribution needs to be calculated. Alternatively, σ2
1/σ

2
2 could

be tested against the F-distribution at 1 − α
2

and α
2

. Previous experiment series

with less replications showed that this two sided test is more powerful than each

1-sided test on its own. The simulation results for this geometrical ARMA(5, 5)

process are listed in Table 5.7. Comparing this simulation results with Figure 5.12

we see that the results of the crossing of the mean rule are too large. The results of

the combined stationarity test are too small. Only the results of the homogeneity-

based truncation-point estimator are located as expected, around observation in-

dex 200. Because all estimated truncation points of the crossing of the mean rule

are deep in the steady state phase, this method is wasteful, but again we can con-

clude, that no bias would affect subsequent estimators.

The next output process is a damped vibration.

Xi = Ψi + (kei
ln(0.05)

l ) · cos(ωi), (5.34)

where k is the amplitude and T = 2π
ω

is the cycle length. k is damped by an

crossing combined homogeneity
mean 458 ± 2 65 ± 1 216 ± 4

std. dev. 143 59 39.8
min. 135 1 152
max. 983 594 355

Table 5.7: Simulation results of a geometrical ARMA(5, 5) process.
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Figure 5.13: Evolution of quantiles of the damped vibration.

exponential function. Here, lF = lE = l and lV = 1. At i = l, the expo-

nential function is 0.05, therefore, a truncation point that is greater than l can be

regarded as a suitable truncation point for reasons of comparison. In our experi-

ments we used k = 10, T = 50 and l = 250. The evolution of the quantiles of

this process is depicted in Figure 5.13. The crossing of the mean rule is a simple

heuristic. The results in Table 5.8 show, that it does not work very well if the

convergence is not monotone. In this case all results of this method are too small.

Bias would be introduced in subsequent methods, which assume identically dis-

tributed data. The results of the combined stationarity test are similar. However

the maximum result of this method seems to be deep enough in the steady state

phase. The homogeneity-based truncation-point estimator is the only method that

returns useful results in this example, even though the standard deviation of the es-

crossing combined homogeneity
mean 175.3 ± 0.2 183.9 ± 0.3 353 ± 22

std. dev. 14.2 26.1 215
min. 133 124 284
max. 226 341 2275

Table 5.8: Simulation results of the damped vibration.
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Figure 5.14: Evolution of quantiles of a process with parabola stretch in the be-
ginning.

timated truncation points is high. This is due to the long tail of the distribution of

the estimated truncation points toward infinity, compare minimum and maximum

value in Table 5.8.

5.6.3 Constant Mean Value

In contrast to the previous section we now demonstrate experiment series with

output processes that have got a constant mean, i.e. E [Xi] = E [Xj] holds for any

i and j. However, all the output processes we use here do not have a constant

distribution, because FXi
(x) 6= FXj

(x) holds for i 6= j during the transient phase.

Detection methods, which are specialised to determine a truncation point lE , might

fail determining a valid truncation point lF , as discussed in Section 5.1.

The first process is governed by a quadratic stretch of the distribution function

crossing combined homogeneity
mean 52.45 ± 0.08 32.2 ± 0.1 58 ± 1

std. deviation 7.53 14.1 10.5
min 33 1 42
max 88 118 125

Table 5.9: Simulation results of the process with parabola stretch in the beginning.
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Figure 5.15: Evolution of quantiles of a geometrical ARMA(10, 10) process.

during the transient phase.

Xi =

(2ik
l
− i2 k

l2
)Ψi if i < l,

kΨi else,
(5.35)

where k is the final stretch during the steady state phase and l, where lF = lV = l

and lE = 1, is the theoretically best truncation point. Here we chose k = 10 and

l = 100. Figure 5.14 shows the evolution of a selection of quantiles of this pro-

cess. In Table 5.9 the results of the simulation experiments with this process are

listed. Again we know that the variance of the process is higher during steady state

and so we tested σ2
2/σ

2
1 against the F-distribution in the combined stationarity test.

A batch size of m = 3 is adequate for this model. For this model the estimates

of the homogeneity-based truncation-point estimator are not as close to the theo-

retically best truncation point as the results for the parabola displacement. This

crossing combined homogeneity
mean 450 ± 3 156 ± 3 620 ± 22

std. deviation 293 284 216
min 52 1 211
max 3392 2026 1333

Table 5.10: Simulation results of a geometrical ARMA(10, 10) process.
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Figure 5.16: Evolution of quantiles of the bounded random walk.

indicates that it is more difficult for the homogeneity test to distinguish between

distributions with a different variance than between distributions with different

mean. However, the minimum and maximum values show that the range of the

estimates is placed around l = 100. The range of the estimates of the combined

stationarity test also include l = 100, but the minimum truncation point of this

method is the first observation. Furthermore, the mean truncation point of this

method is too small. The mean truncation point of the crossing of the mean rule is

higher than that of the combined stationarity test, but the minimum and maximum

estimate show that the results of this method are also too small. From point of

view of mean value analysis the results of the combined stationarity test and the

crossing of the mean rule are acceptable, because E [Xi] is constant for all i. How-

ever, these two methods are not able to detect the truncation point from which on

FXi
(x) is constant. The homogeneity-based truncation-point estimator is the only

method that can be recommended, if other measures than E [X∞] are of interest.

The next output process is again a geometrical ARMA(10, 10) process, sim-

ilar as defined in Equation (5.33). Here we chose Υ
(10)
i = E

[
Υ

(10)
∞

]
= 1024

for i ≤ 0. Because of this, E
[
Υ

(10)
i

]
= 1024 for 1 ≤ i < ∞ is constant right

from the beginning, other measures of the distribution are not. The evolution of
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the quantiles of this process is shown in Figure 5.15. In Table 5.10 the results of

the simulation experiments with this process are listed. As with the previous geo-

metrical ARMA(5, 5) process we have to adjust the test statistic of the combined

stationarity test. We tested σ2
2/σ

2
1 against the F-distribution and used a batch size

ofm = 50 because of the highly correlated data. The mean truncation point of the

homogeneity-based truncation-point estimator is deepest in the steady state phase,

followed by the mean truncation point of the crossing of the mean rule and then

the one of the combined stationarity test. The standard deviation of the results of

all methods is high, which leads to high maximum values for the crossing of the

mean rule and the combined stationarity test.

The next process is based on a random walk X ′
i, which is defined by

X ′
i =

 X ′
i−1 + 1, with probability 0.5,

X ′
i−1 − 1, with probability 0.5,

with the initial state X ′
0 = 50. The process X ′

i can take any value between −∞

and +∞. The final process Xi is bounded, so that its range is the interval [0, 100]:

Xi =


0, if X ′

i < 0,

X ′
i, if 0 ≤ X ′

i ≤ 100,

100, if X ′
i > 100.

Because Xi is bounded a marginal distribution for i = ∞ exists. The peculiarity

of this process is that the expected value E [Xi] = 50 is constant over i, whereas

all quantiles other than the median are not constant and converge to the thresholds

crossing combined homogeneity
mean 384 ± 5 355 ± 9 8494 ± 259

std. deviation 441 884 2586
min 40 1 3210
max 7647 7761 17624

Table 5.11: Simulation results of the bounded random walk.
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0 and 100. This can be seen in Figure 5.16. FXi
(x) is very steep around x =

50 for small i. After a long simulation time the shape of FXi
(x) is completely

different. For large i it is very flat around x = 50. However, the expected value

E [Xi] is constant for all i. Analysis of mean values only would show a constant

behaviour, even though this process is transient and the CDF is slowly converging

to its marginal distribution. Again, for the combined stationarity test we chose

σ2
2/σ

2
1 and tested it against the F-distribution because the variance is increasing

over time. We set a batch size of m = 200 because of the extremely correlated

data. Comparing the simulation results listed in Table 5.11 with Figure 5.16 we

clearly see, that the estimated truncation points of the crossing of the mean rule

and the combined stationarity test are too small. After deletion the remaining

data is still not identically distributed. Only the results of the homogeneity-based

truncation-point estimator seem to be reasonably deep in the steady state phase.
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Figure 5.17: Evolution of quantiles of the M/M/1 queue without initial customers.

5.6.4 Queueing Models

Queueing models are a very important application of stochastic discrete event

simulation. Here we use the output data of a selection of standard examples for

our simulation experiment series.

The next analysed output stream is the time in system of a job leaving an

M/M/1 queue with arrival rate λ = 0.95 and service rate µ = 1. In consequence

the traffic intensity of this server is ρ = 0.95 and it is stable. No initial cus-

tomers are waiting in the queue. In Figure 5.17 the evolution of a selection of

quantiles is depicted. The graphs with high frequency changes are based on 101

simulation runs, whereas the flat lines are the theoretical course of the quantiles

calculated by the method in Appendix A.3. Because ρ = 0.95 we expect highly

correlated data and chose a batch size of m = 100 for the combined stationar-

crossing combined homogeneity
mean 366 ± 3 359 ± 7 456 ± 22

std. deviation 259 694 215
min 51 1 188
max 2280 5235 1328

Table 5.12: Simulation results of the M/M/1 queue without initial customers.
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Figure 5.18: Evolution of quantiles of the M/E2/1 queue.

ity test. The values listed in Table 5.12 are the simulation results of the M/M/1

queue. The mean truncation point of the homogeneity-based truncation-point esti-

mator is deepest in the steady state phase. The range of the results of the combined

method and the crossing of the mean rule are larger than the range of the results of

the homogeneity-based truncation-point estimator. However, the results of all of

these methods seem to be too small to eliminate the initialisation bias completely.

Figure 5.17 shows that the higher quantiles have not converged to their steady

state value at e.g. the 456th observation index.

The next used queueing model is an M/E2/1 queue. We chose the interarrival

rate λ = 1 and the mean service rate of the Erlang distribution µ = 1
0.95

with

the shape (number of stages) 2. This queueing model is stable because the traffic

intensity is ρ = 0.95. The evolution of the quantiles is depicted in Figure 5.18 and

crossing combined homogeneity
mean 345 ± 2 351 ± 7 406 ± 25

std. deviation 236 682 249
min 55 1 115
max 2559 4565 1646

Table 5.13: Simulation results of the M/E2/1 queue.
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Figure 5.19: Evolution of quantiles of the M/M/1 queue with initial customers.

results are shown in Table 5.13. Again, the theoretical course and the estimation

of the quantiles based on 101 replication can be seen. We expect highly correlated

data and chose a batch size of m = 100 for the combined stationarity test. The

results of the M/E2/1 queue are very similar to the results of the M/M/1 queue.

The mean truncation point of the homogeneity-based truncation-point estimator

is deepest in the steady state phase and within the smallest range.

The next model is again an M/M/1 queue. In contrast to the previous exper-

iments, here, we chose λ = 0.8 and µ = 1 resulting in ρ = 0.8. Furthermore,

the initial queue length is one hundred customers. The evolution of the quantiles

is depicted in Figure 5.19. Again, the theoretical course and the estimation of

the quantiles based on 101 replication can be seen. Because of the initial cus-

tomers the plot shows a non-monotonic convergence of the response time towards

crossing combined homogeneity
mean 1940 ± 8 401 ± 2 725 ± 48

std. deviation 789 180 480
min 259 32 573
max 5362 1480 6209

Table 5.14: Simulation results of the M/M/1 queue with initial customers.
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its steady state distribution. The mean truncation point of the crossing of the

mean rule is deepest in the steady state phase. However, comparing the results

of Table 5.14 with Figure 5.19 we can see that the crossing of the mean rule is

too wasteful. The mean truncation point of the combined method appears to be

too small because most quantiles have not converged to their steady state value.

The mean truncation point of the homogeneity-based truncation-point estimator

is located in an area where quantiles seem to have converged.

5.6.5 Distribution of the Truncation Points

The results presented so far are derived measures of the distribution of the esti-

mated truncation points. We get a deeper insight if we have a look at the CDF

and the probability density function (PDF) of the estimates. Therefore, we depict

empirical CDF and histograms of the previous simulation results of selected mod-

els in Figures 5.20 to 5.24, which can be found at the end of this section. These

simulation experiments are based on at least 104 replications. The graphs of the

homogeneity-based truncation-point estimator are not as smooth as the graphs of

the combined stationarity test because in the last case one estimate is based on

100 replications which leads to a lower number of final estimates.

In Figure 5.20 the empirical CDF and an histogram of the estimated truncation

points of the combined stationarity test and the homogeneity-based truncation-

point estimator for the process with the quadratic displacement are shown, see

Equation (5.32) and compare with Table 5.6. We can see that both histograms

show an almost symmetric distribution. The right tail of the distribution is short

and bounded because this process has got a well defined truncation point. The

left tail is short and greater than zero because the transient behaviour is obvious

for both test methods. Again we can see that the results of the homogeneity-

based truncation-point estimator are closer to the theoretical optimum than the

results of the combined stationarity test. However, the symmetrical form of both
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distributions shows that the estimates are stable.

In Figure 5.21 the distribution of the results for the geometrical ARMA(5, 5)

process and Υ
(5)
i = 0 for i ≤ 0 are depicted, see Equation (5.33) and compare

with Table 5.7. Both distributions are not symmetric. They have a long right

tail because this process has no well defined truncation point and the initial state

theoretically influences the process for all i. The left tail of the distribution of the

combined stationarity test even includes zero. This shows that the output stream

of some replications could meet the conditions of the combined stationarity test

from the beginning. The left tail of the distribution of the homogeneity-based

truncation-point estimator is bounded at around 150 observations and, therefore,

this test guarantees the deletion of transient observations.

The distributions for the process with the damped vibration, see Equation (5.32)

and compare with Table 5.6, is quite interesting. Because of its non-monotonic

transient behaviour the distribution of the estimated truncation points is multi-

modal. The maxima, resp. minima, of the amplitudes of the damped vibration

are directly visible in the distribution of the homogeneity-based truncation-point

estimator. Whenever the process, i.e. the test sample, is close to a maximum or

minimum it is unlikely that the homogeneity-based truncation-point estimator de-

tects a truncation point. The maxima and minima of our analysed output process

are located at 1
4
kT with the cycle length T = 50 and integer value k. Compare this

locations with the observation indexes 275, 300, 325 and 350 in Figure 5.22(b). In

the distribution of the results of the combined stationarity test these maxima and

minima locations are only indirectly visible. This method is more likely to reject

the hypothesis of identically distribution if the number of maxima and minima

within the first and second window is unequal, compare Figure 5.22(a).

In Figure 5.23 the distribution of the estimated truncation points of the M/M/1

queue with ρ = 0.95 and no initial customer is depicted, compare with Table 5.12.

Surprisingly, the distribution of the homogeneity-based truncation-point estimator
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and the combined stationarity test look completely different. The distribution of

the homogeneity-based truncation-point estimator is comparable to the distribu-

tion of the ARMA process in Figure 5.21(b). The form of the tails seems to be

similar, even though the mode is not a clearly visible. In contrast, the distribution

of the results of the combined stationarity test shows a high mode at observation

index one and a very long tail to the right. This shows that a lot of simulation runs

satisfy the condition of the combined stationarity test from the beginning. This

happens because the initial queue length of zero customers is the system state

with the highest probability during steady state.

Figure 5.24 shows again the distributions for the M/M/1 queue, but here ρ =

0.8 and there are one hundred initial customers, compare with Table 5.14. The

distributions of the estimated truncation points of both methods look similar again.

Both distributions have a long right tail and a short tail to the left. It is unlikely that

either test selects the truncation point at observation index zero. This shows that

the high initial state introduces a transient behaviour which is easier to recognise

for the combined stationarity test than in the previous example.
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Figure 5.20: Histogram and empirical CDF of the estimated truncation points for
the parabola displacement, see Equation (5.32) and compare with Table 5.6.
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Figure 5.21: Histogram and empirical CDF of the estimated truncation points for
a geometrical ARMA(5, 5) process, see Equation (5.33) with Υ

(5)
i = 0 for i ≤ 0

and compare with Table 5.7.
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Figure 5.22: Histogram and empirical CDF of the estimated truncation points for
the process governed by a damped vibration, see Equation (5.34) and compare
with Table 5.8.
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Figure 5.23: Histogram and empirical CDF of the estimated truncation points
for the M/M/1 queue with ρ = 0.95 and no initial customers, compare with Ta-
ble 5.12.
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Figure 5.24: Histogram and empirical CDF of the estimated truncation points for
the M/M/1 queue with ρ = 0.8 and one hundred initial customers, compare with
Table 5.14.



144 CHAPTER 5. INITIAL TRANSIENT PHASE

5.6.6 Interpretation

The crossing of the mean rule is just a simple heuristic. No real null hypothesis is

tested and, therefore, no significance level can be given. It is easy to find processes

where this method fails.

As we have seen in the previous sections, the parameters of the combined

stationarity test have to be chosen for every model separately. Especially the batch

sizem is problematic. Ifm is too small the batch means will still be correlated and

the estimation of the variance is doubtful. If m is too big the transient phase may

be just a small part of the first window and the combined stationarity test may

overlook the transient behaviour. The settings we chose for m in our examples

led to good simulation results. We believe that it might be possible to choose

even better settings for m, however, this would not change the general outcome

of the experiments. Another problem with the combined stationarity test is that it

assumes the variance to be smaller during the steady state phase than during the

transient phase. We gave examples that violate this assumption. If the analyst does

not know whether the variance is increasing or decreasing over time a two-sided

test should be used. This reduces the power of the test because each direction has

to be tested at a lower significance level of 1− α
2

.

In general the homogeneity-based truncation-point estimator delivers trunca-

tion points, which are deepest within the steady state phase. This is because the

homogeneity test checks equality of the distribution. In contrast to this the cross-

ing of the mean rule targets at a stable mean and the combined stationarity test

checks a stable variance. These are just necessary conditions for steady state in

terms of the probability distribution and are included in the homogeneity test.

Despite all these positive results of the homogeneity-based truncation-point

estimator, i.e. Listing 5.1, we can see that the estimated truncation points are still

not deep enough in the steady state phase. This problem is caused by the al-

gorithmic approach which aims at a precise estimation of the theoretically best
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truncation point. The results of Listing 5.1 are often very close to the theoretically

best truncation point, but still too short. This problem can be solved by the more

wasteful algorithmic approach of Listing 5.3. This is discussed in the next section.

5.6.7 Time and Memory Efficient Algorithm

The experiments done in the previous sections aim at the estimation of a precise

truncation point. We have seen that the initialisation bias can still remain after

deletion, if the estimated truncation point is smaller than the theoretically best

truncation point. For reliable estimators in subsequent analysis, which assume

identically distributed data, it is not important to know the truncation point very

precise, but to choose a truncation point which is beyond the theoretically best

truncation point. To avoid unnecessary wasteful methods the estimated truncation

point should still be close to the theoretical value.

In the software tool Akaroa2 a truncation point detection method is imple-

mented which is a combination of the crossing of the mean rule and Schruben’s

test, see [118-SST83]. Thus it covers mainly Equation (5.3), and would also

cover Equation (5.4) in some selected examples. Mixing two different strate-

gies hides their weaknesses, this is why this combination was not used before.

Note, Schruben’s test of [118-SST83] was replaced in [64-GSS94] by a newer

version, which is used in experiments of previous sections. We will denote the

final estimate of this method by l̄E . During the heuristic phase of the method a

window size is estimated by the crossing of the mean rule. This window size is

used in Schruben’s test to verify that the data is identically distributed and there is

no trend. If the test fails, the window is shifted by its complete size. The estimated

truncation point is set to be the end of the window, which contains the data that

is proved to be without a trend. For more details see e.g. [55-Gho04]. The com-

bination of two different truncation point detection methods makes this approach

more powerful than most other approaches which are based on just one criterion.
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The time and memory efficient version of the homogeneity-based truncation-

point estimator, i.e. Listing 5.3, operates by doubling the actual candidate for a

truncation point, if one of the homogeneity test fails. Furthermore, the random

sample at the actual candidate is compared only with a selection of subsequent

random samples. As in the truncation point detection method of Akaroa2, the

final truncation point is set to be at the end of the so far processed data.

Both methods do not search continuously for a truncation point. Therefore,

it is not possible to draw the empirical distribution function of their estimates or

derive any other measure than the average over all simulation experiments. In the

previous section we demonstrated that especially the queueing models produce

output processes which are difficult to analyse. We repeat those experiments with

the more promising algorithmic approach and report average truncation points.

For the M/M/1 queue we chose an interarrival rate λ = 1 and a service rate

µ = { 1
0.5
, 1

0.95
}, leading to the traffic intensity ρ = {0.5, 0.95}. The parameters

of the M/E2/1 queue are chosen similarly. The interarrival rate is λ = 1 and the

service rate of the Erlang distribution is µ = { 1
0.5
, 1

0.95
} with shape 2. The traffic

intensity is here also ρ = {0.5, 0.95}. In both examples we observed the system’s

response time Ri of the ith customer.

The average of all estimated truncation points of every method and every

queueing model at all traffic intensities is shown in Table 5.15. We can see,

that the average truncation point of the method implemented in Akaroa2 is larger

than the result of the homogeneity-based truncation-point estimator for ρ = 0.5

Akaroa2 homogeneity
M/M/1 0.50 305.3 ± 0.3 52 ± 3
M/M/1 0.95 1224 ± 12 9272 ± 545
M/E2/1 0.50 283.2 ± 0.2 54 ± 4
M/E2/1 0.95 1163 ± 4 8378 ± 556

Table 5.15: Average of all estimated truncation points.
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in both queueing models. For ρ = 0.95 the situation is reversal. In first place

the distribution function at the estimated truncation point should be identical to

the steady state distribution and in second place it should be small to avoid the

deletion of too much data. In Figure 5.25(a) and Figure 5.26(a) we can see that

the distribution function at the estimated truncation points of both methods with

ρ = 0.5 is indistinguishable from the steady state distribution. The average es-

timate of the homogeneity-based truncation-point estimator is smaller than the

average estimate of the method implemented in Akaroa2. The method imple-

mented in Akaroa2 is here unnecessary wasteful because it deletes too much data.

For ρ = 0.95 the situation is different, the homogeneity-based truncation-point

estimator deletes more data. Figure 5.25(b) and Figure 5.26(b) show that this is

necessary. The graph of the steady state distribution covers only the graph of the

homogeneity-based truncation-point estimator. The distribution function at the

truncation points estimated by Akaroa2 are still different to the steady state distri-

bution. We can predict, that the coverage of subsequent estimators will be smaller

for ρ = 0.95 than for ρ = 0.5 due to inaccurate deletion of the initial transient

phase. In general, the homogeneity-based truncation-point estimator with the ap-

propriate algorithmic approach of Listing 5.3 is more precise, less wasteful and a

bias on subsequent steady state estimators can almost be excluded. It implements

Equation (5.1), which covers Equation (5.3) and Equation (5.4), as discussed in

Section 5.1.
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Figure 5.25: FRi
(x) at the average truncation points (l̄E = {305, 1224}; l̄F =

{52, 9272}) of the M/M/1 queue compared with the steady state distribution
FR∞(x) at different traffic loads ρ.
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Figure 5.26: FRi
(x) at the average truncation points (l̄E = {283, 1163}; l̄F =

{54, 8378}) of the M/E2/1 queue compared with the steady state distribution
FR∞(x) at different traffic loads ρ.
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5.6.8 Versions of Homogeneity-Based Estimators

In previous sections we stated that the algorithmic approach of Listing 5.3 de-

tects truncation points deeper within the steady state phase than the other algo-

rithmic approaches of Listing 5.1 and Listing 5.2. Here, we will prove this ex-

perimentally for the M/M/1 queue. The results of Listing 5.1 are shown in Fig-

ure 5.27, the results of Listing 5.2 are shown in Figure 5.28 and the results of

Listing 5.3 are shown in Figure 5.29. The curves in Figure 5.27(a), Figure 5.28(a)

and Figure 5.29(a) show an M/M/1 queue with 19 initial customers and we varied

0.75 ≤ ρ ≤ 0.98 by varying µ and keeping λ = 1 constant. For the curves in

Figure 5.27(b), Figure 5.28(b) and Figure 5.29(b) we varied the number of initial

customers 0 ≤ N0 ≤ 30 and kept ρ = 0.95 constant with λ = 1. All curves show

mean values of lF based on one hundred simulation experiments with p = 100.

We can see that the general form of the curves is similar no matter which

algorithmic approach is used. However, it is clearly evident that the estimates

of lF of Listing 5.3 are greater than the estimates of both other methods. This

supports our previous assumption that Listing 5.3 detects truncation points deeper

within the steady state phase than the other algorithmic approaches.

Quite interesting is the location of the minimum of the depicted curves. In Fig-

ure 5.27(a), Figure 5.28(a) and Figure 5.29(a) the minimum is located at ρ = 0.95.

Because we used N0 = 19 initial customers this conforms to theory, E [N∞] =

ρ
1−ρ

= 0.95
1−0.95

= 19. In Figure 5.27(b) and Figure 5.28(b) we can see that the

minimum is located at points smaller than N0 = 19. This is contrary to what we

found out in Section 5.2. However, the minimum in Figure 5.29(b) is exactly at

N0 = 19, which conforms closer to theory.
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(a) Mean of lF in dependence of 0.75 ≤ ρ ≤ 0.98, N0 = 19.
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(b) Mean of lF in dependence of 0 ≤ N0 ≤ 30, ρ = 0.95.

Figure 5.27: Results of Listing 5.1; mean of all estimated truncation points lF
of an M/M/1 queue with traffic intensity ρ and N0 initial customers, based on a
hundred experiments with p = 100.
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(b) Mean of lF in dependence of 0 ≤ N0 ≤ 30, ρ = 0.95.

Figure 5.28: Results of Listing 5.2; mean of all estimated truncation points lF
of an M/M/1 queue with traffic intensity ρ and N0 initial customers, based on a
hundred experiments with p = 100.
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(b) Mean of lF in dependence of 0 ≤ N0 ≤ 30, ρ = 0.95.

Figure 5.29: Results of Listing 5.3; mean of all estimated truncation points lF
of an M/M/1 queue with traffic intensity ρ and N0 initial customers, based on a
hundred experiments with p = 100.
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5.7 Limits and Conclusion

In the previous section we demonstrated that the use of homogeneity tests on the

output of multiple independent parallel replications opens a new class of trunca-

tion point detection methods, which are based on the convergence of the probabil-

ity distribution towards its steady state behaviour. This class covers the truncation

point detection in a broader sense, i.e. it implements Equation (5.1). Apart from

[9-AG06], practically all other methods cover steady state of the mean (see Equa-

tion (5.3)) or steady state of the variance (see Equation (5.4)).

In Section 5.2 we discussed the transient behaviour of an M/M/1 queue. Even

though the M/M/1 queue is quite simple, in comparison to other simulation mod-

els, its transient behaviour can be quite complex. In this example it seems to

be necessary to use Equation (5.1) to detect the steady state phase. Simplifying

assumptions, like Equation (5.8), do not hold for the M/M/1 queue.

The three different algorithmic approaches of Section 5.4 have a slightly dif-

ferent focus. The approaches of Listing 5.1 and Listing 5.2 aim at the estimation

of l close to the theoretically best choice, whereas the approach of Listing 5.3

selects an l beyond the best choice. The first two versions are appropriate if the

creation of output data is very time consuming. The third version is more wasteful

and should be used if the creation of output data is not very time consuming.

However, there are also some limitations for the first two versions. As we

already pointed out, the algorithmic approaches of Listing 5.1 and Listing 5.2 tend

to estimate l smaller than the theoretically best choice. This may cause problems

for subsequent analysis. An estimator, that is assuming identically distributed

observations, would still be biased. Note, that this bias is much smaller than the

bias of non truncated data. To obtain estimates of l which are greater than the best

choice, we introduced the algorithmic approach of Listing 5.3. In general a bias

on subsequent estimators can be excluded. Its worst case time complexity is the
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best and its storage requirement is small and constant. Therefore, we recommend

the approach of Listing 5.3.

All homogeneity tests, which are discussed in Section 5.3, operate on a se-

lected significance level. This is the reason why true equality in distribution can-

not be tested. If the difference in distribution of consecutive random samples

is very small, it might be overlooked by the homogeneity tests, compare Equa-

tion (5.2). In general, the difference in distribution is growing during the tran-

sient period if the distance in observation time of two random samples is growing.

Thus, the ratio parameter r can prevent the homogeneity tests from overlooking

a small difference. The automated detection of r relies on searching for the first

two random samples, which have a noticeable difference in distribution. However,

because the rate of the convergence of the probability distribution might change

over time the general problem remains. Large errors can be avoided by using a

boundary value r ≥ rmin, as it is suggested in Section 5.5.

The outcome of homogeneity tests depends on the size of the compared ran-

dom samples. In our approach a random sample is established by taking one

observation from each replication. Thus, our sample size p is given by the number

of parallel replications. In Section 5.5 we showed that p ≥ 30 should be used

and that a good choice is p = 100. A hundred parallel replications is quite large.

However, we have to keep in mind that we do not need p computers or processors

to execute p parallel replications. Depending on the memory requirements of the

simulated model, all replications could even be executed on only one computer.

This might even be advisable to avoid unnecessary network traffic.

The comparison is done with methods which have a different focus of anal-

ysis. As stated previously, the application area of both, Schruben’s methods in

its various versions and the crossing of the mean rule, is mean value analysis.

These methods have been applied in automated simulation analysis, for example

in Akaroa2. There are no other methods available which follow exactly our aim
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of detecting steady state in sense of the underlying distribution and which are well

enough documented for implementation. Furthermore, our method uses multiple

replications. Here, the use of synchronous data collection enables new techniques

of online analysis of simulation output data.

In this chapter we focus entirely on reducing the bias caused by the initial

state. We reject using different initial states because this approach is not possible

in automated simulation without further knowledge of the steady state distribution,

as discussed in the introduction of this chapter. Choosing the initial state of each

replication empirically is a possible alternative. However, this alternative does

not guarantee that the initial transient gets shorter in comparison to choosing the

same initial state for all replications. In mean value analysis of queueing models

the system state “empty & idle” is selected as a save initial state, because it is

known to lead to not an excessively long initial transient, see [79-KL85]. There are

initial states other than “empty & idle” state which can be associated with shorter

initial transients, however, the possibility of choosing an initial state that leads to

a long initial transient is high if one simulates a system of unknown dynamics.

For the same reason it is advisable to choose a save initial state for all replications

when analysing quantiles. Alternative strategies of initialisation do not guarantee

a shorter initial transient.

Because of the occurrence of ties in random samples of discrete random vari-

ables the test statistic of homogeneity tests has to be adjusted. Thus, we have

to distinguish between stochastic output process with a discrete or a continuous

range. Our implementation has only been tested for the continuous case.

In Section 5.6 we demonstrated on a variety of different output processes,

that this new class of truncation point detection methods is more powerful than

methods of other classes. The estimated truncation point l is in general deeper

within the steady state phase and it works fine for a wider range of models. The

use of multiple independent parallel replications offers not only a speed up in the
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creation of output data, furthermore, it enables the implementation of a new class

of truncation point detection methods.



Chapter 6

Quantiles in Steady State

In Chapter 2 we outlined the basic mathematics of quantile estimation and the

situation of simulation output analysis is discussed as application area. Here, we

would like to develop methods for automated and sequential analysis to estimate

a set of quantiles. This set of quantiles can be used to depict the underlying CDF.

Parts of the discussion and results of this chapter are published in [38-Eic06] and

[44-EMP07b].

First, we will check the suitability for automated analysis of the most promis-

ing quantile estimator. This is done in Section 6.1. In Section 6.2 we derive further

quantile estimators by applying estimation techniques from mean value analysis

to the area of quantile analysis. Their performance is analysed and discussed. A

new quantile estimator, which is based on estimation techniques for independent

and identically distributed random samples, is introduced in Section 6.3. Its per-

formance is also analysed. In Section 6.4 experimental studies are done with dif-

ferent classes of models to test different properties of the estimators. This chapter

ends with some conclusions in Section 6.5.

6.1 Distribution Estimated by Several Quantiles

A quantile xq = F−1
X (q) is the point (xq, q) of the CDF of X . Several estimated

quantiles with carefully selected q1, q2, . . . can give an impression of FX(x) and

158
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can be used to estimate FX(x).

Probably the best and most studied method for the calculation of several quan-

tiles is Raatikainen’s method, see Section 2.4.2. Let us briefly look at this method.

This method seeks to estimate the probability of predefined intervals Ck. By

defining Ck = [−∞, xk] the probability qk = FX(xk) is estimated. The desired

halfwidth δk (see Equation (2.25)) and the combined confidence level 1 − α (see

Equation (2.28)) have to be specified by the analyst. Furthermore, the number

of batches used for spectral analysis has to be set. The standard setting is 512

batches, as this value is chosen in [110-Raa95] for experiments with an M/M/1

queue.

Table 6.1 lists the results of our coverage analysis of Raatikainen’s method

obtained for m = 25 estimated quantiles and α = 0.05. Reported are mean

values of all quantiles. The column halfwidth shows the halfwidth of the 95%

confidence interval of the estimated coverage. The column coverage shows the

probability that all FX(xk) are within the estimated confidence intervals. Because

model coverage halfwidth runs
normal process ≈ 1 - 104

uniform process 0.9998 < 0.0003 104

exponential process ≈ 1 - 104

geometrical ARMA(1, 1) 0.9994 < 0.0005 104

geometrical ARMA(2, 2) 0.9983 < 0.0009 104

M/M/1/∞ ρ = 0.5 0.9969 < 0.0011 104

M/M/1/∞ ρ = 0.75 0.9953 < 0.0014 104

M/M/1/∞ ρ = 0.9 0.9962 < 0.0013 104

M/E2/1/∞ ρ = 0.5 0.9999 < 0.0002 104

M/E2/1/∞ ρ = 0.75 ≈ 1 - 104

M/E2/1/∞ ρ = 0.9 ≈ 1 - 104

M/H2/1/∞ ρ = 0.5 0.9995 < 0.0005 104

M/H2/1/∞ ρ = 0.75 0.9992 < 0.0006 104

M/H2/1/∞ ρ = 0.9 0.9981 < 0.0009 104

Table 6.1: Mean coverage of all quantile estimates of Raatikainen’s method, see
Section 2.4.2, where the expected coverage is 0.95.
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we set α = 0.05 the expected coverage is 0.95. We can see that the estimated

coverage is higher than the assumed confidence level and close to one. We based

or results on a time consuming number of 104 independent results, see column

runs. A fixed number of independent repetitions is used e.g. in [85-LK00]. An

estimated coverage close to one shows that Raatikainen’s point estimate is very

precise for δk = arcsin(0.05) (the value is suggested in [110-Raa95]). However,

in our example the interval estimate is too conservative. This might be due to

Bonferroni’s inequality, see Equation (2.28). It gives an upper bound, which is

possibly quite conservative and too strict.

We have found that the parameterisation of Raatikainen’s method is difficult

in general. The analyst has to choose adequate δk which are probabilities. As

well as this, the analyst has to choose x1, x2, . . ., xm which are in the domain of

the measure itself. Furthermore, the domain of FX(x) must be known in order to

choose a good set of x1, x2, . . ., xm. If the domain of FX(x) is unbounded, i.e.

−∞ ≤ x ≤ ∞, an even deeper prior knowledge is needed to place all x1, x2, . . .,

xm in the most interesting area. We can see, that Raatikainen’s method is difficult

for automated analysis. It is impossible to set the xk in critical parts of FX(x) for

an unknown and arbitrary distribution.

The next problem for the analyst is to decide the numberm of estimated quan-

tiles. How many quantiles are needed to obtain a reasonable estimate of the curve

of FX(x)? It is not a good idea to choosem as large as possible because of Bonfer-

roni’s inequality in Equation (2.28). 5 ≤ m ≤ 25 is recommended in [110-Raa95]

Furthermore, all estimates q1, q2, . . ., qm are correlated, because they are cal-

culated from the same simulation output process. A higher value of m leads

to smaller distances between neighbouring xk and the predefined intervals Ck =

[−∞, xk] will be less disjoint. Equation (2.23) describes the correlation between

q1, q2, . . ., qm. Correlation is high if values of xk are located closely together. This

is the reason for the use of Bonferroni’s inequality in Equation (2.28). However,
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Raatikainen’s method cannot suggest the optimal value for m, which should also

take the choice of δk into account.

We can conclude that Raatikainen’s method and other methods described in

Section 2.4 are not the best choice for automated analysis of several quantiles, de-

spite their good statistical properties. In the next sections we will derive methods

for the estimation of several quantiles, which are based on multiple independent

replications. They are applicable in sequential and automated analysis and have

good statistical properties.

6.2 Batch Means and Spectral Analysis for Order
Statistics

Let us assume that having applied the method described in Chapter 5 the remain-

ing output process {Xi}∞lF =i is in its steady state phase, where lF is the truncation

point as defined by Equation (5.1). Thus, we can assume that all random vari-

ables Xi of the output process {Xi}∞i=lF
have the same marginal distribution, i.e.

Equation (2.5) holds, and the data of the beginning lF − 1 observation indexes are

truncated.

Using p multiple replications, as in Chapter 5, we obtain the observations xj,i,

where 1 ≤ j ≤ p is the replication index and lF ≤ i < ∞ is the observation in-

dex. The independence of all replications implies that the observations {xj,i}pj=1

are independent of each other. This is valid for all observation indexes i. There-

fore, for a fixed observation index the statistical methods which are discussed in

Section 2.2, are directly applicable to the observations {xj,i}pj=1.

Here, the definition of the population quantile, see Equation (2.12), has to be

extended by adding the observation index i:

xq,i = F−1
Xi

(q) = inf{x|FXi
(x) ≥ q}. (6.1)

Let {yj,i}pj=1 be the ordered values of {xj,i}pj=1 and let {yj,i}∞i=lF
be a realisation of
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the stochastic process {Yj,i}∞i=lF
. In this sense Yj,i represents the jth order statistic

at observation index i.

For a given probability q the quantile F−1
Xi

(q) can be estimated by the sample

quantile

x̂q,i = ybpq+1c,i, (6.2)

(compare with Equation (2.14)). The homogeneity test of Section 5.3 ensures that

the difference in distribution between the remaining Xi, where i ≥ lF , is negli-

gible. In consequence, for fixed j all {yj,i}∞i=lF
describe a quantile of the steady

state probability distribution FX(x), so that the average value can be calculated

by

x̂q =
1

n− lF + 1

n∑
i=lF

x̂q,i, (6.3)

which is a point estimate of F−1
X (q) and where n is the current simulation horizon.

Theorem 6.2.1 x̂q is an asymptotically unbiased estimator of F−1
X (q) for large p,

where n− l + 1 is the number of order statistics used for calculation.

Proof The expected value of Equation (6.3) is

E [x̂q] =
1

n− lF + 1

n∑
i=lF

E [x̂q,i] (6.4)

=
1

n− lF + 1

n∑
i=lF

E
[
ybpq+1c,i

]
.

E
[
ybpq+1c,i

]
= F−1

Xi
(q) holds for large values of p, see [34-Dav70] or [24-Che02].

Furthermore, all XlF , XlF +1, . . . are assumed to be identically distributed, i.e.

∀i : FXi
(x) = FX (x). Equation (6.4) evaluates to

E [x̂q] =
1

n− lF + 1

n∑
i=lF

F−1
Xi

(q) (6.5)

=
1

n− lF + 1

n∑
i=lF

F−1
X (q)

= F−1
X (q).
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The estimator x̂q is asymptotically unbiased, i.e. E [x̂q] − F−1
X (q) = 0, because

Equation (6.5) holds for large p and i ≥ lF .

Our aim is to estimate not only one quantile at a given probability q but to

estimate several quantiles of FX(x). Here, a natural approach is to calculate those

quantiles which are represented by the jth order statistics Yj,i at observation index

i. The quantile representation of the jth order statistic depends on the form of the

distribution FX(x) (see Equation (2.15), Equation (2.16) and Equation (2.17)).

The probability qj , associated with the quantile xqj
, which is represented by the

jth order statistic, can be estimated by

q̂j =


j

p+1
(unknown / uniform case),

j

p+ 1
2

(exponential case),
j− 1

2

p
(normal case),

(6.6)

as discussed in Section 2.2.2. See [34-Dav70] for details about asymptotic prop-

erties. Note, our implementation of a quantile estimation method is focused on

the unknown case. Equation (6.3) changes to

x̂q̂j
=

1

n− lF + 1

n∑
i=lF

yj,i (6.7)

Corollary 6.2.2 x̂q̂j
is an asymptotically unbiased estimator of F−1

X (qj) for large
p, where n− l + 1 is the number of order statistics used for calculation.

Proof E [yj,i] = F−1
Xi

(qj) holds for large values of p, see [33-DJ54] and [34-Dav70].

Analogously to the proof of Theorem 6.2.1, E
[
x̂q̂j

]
= F−1

X (qj) can be shown.

Every simulation is a statistical experiment. Point estimators never return ex-

act values, even if they are unbiased. Confidence intervals, or interval estimates,

are essential to provide convincing results. To establish a confidence interval for

xqj
given by Equation (6.7) its variance Var

[
x̂qj

]
is helpful. Note, that {yj,i}∞i=lF

(row) is correlated and the variance cannot be estimated directly. The form of
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the right hand side of Equation (6.3) is identical to mean value estimators of sin-

gle simulation runs. The difference is that each component describes a quantile.

Therefore, known techniques for variance estimation of mean value estimators can

be applied. Spectral analysis and batching methods are commonly used in mean

value analysis.

Both, spectral analysis and batching methods, are already used in [71-HL84]

for variance estimation in quantile analysis. Heidelberger and Lewis use the max-

imum transformation, see Section 2.4.1, to obtain extreme quantiles of the out-

put process. Here, we replace the maximum transformation because independent

replications allow us to use the more natural estimators Equation (6.3) or Equa-

tion (6.7) Thereby we extend the method of Heidelberger and Lewis to multiple

independent replications. Furthermore, the original method operates on data with

fixed sample size. The extended method is applicable for a sequential approach.

6.2.1 Spectral Analysis

In [72-HW81] a confidence interval for the steady state mean value is generated

by spectral analysis on basis of a single simulation run. This confidence interval

is used to control run length to obtain estimates with a specified accuracy. This

method assumes that the output sequence converges to a steady state behaviour

which can be modelled as a covariance stationary process. It was originally used

for mean value analysis. In conjunction with the maximum transformation, it is

also used for estimation of one single quantile, see [71-HL84].

Similarly, the sequence {yj,lF , yj,lF +1, . . . , yj,n} can be used for this spectral

method, even though the analysed measure is a quantile and not the mean. This

is because the spectral method’s only assumption is that the analysed sequence

of observations represents a covariance stationary process (see [72-HW81]). The

spectral method of Heidelberger and Welch is applicable in this context. In the

following we describe how spectral analysis can be used to establish a confi-
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Figure 6.1: Schematic diagram of spectral analysis to estimate Var
[
x̂qj

]
, where

1 ≤ j ≤ p.

dence interval for the point estimator given by Equation (6.3). Figure 6.1 shows a

schematic diagram of spectral analysis applied for every sequence of order statis-

tics.

Let {yj,i}ni=lF
be a realisation of the stochastic process {Yj,i}ni=lF

. The covari-

ance function γ(k) is defined by

γ(k) = Cov [Yj,i, Yj,i+k] . (6.8)

Because the process is assumed to be covariance stationary the absolute value of

i does not matter, as long as i ≥ lF . γ(k) may also depend on rank j, however,

to simplify the notation this dependence is dropped in the following discussion.

The spectral density ρ(f) at frequency f is defined as

ρ(f) =
+∞∑

k=−∞

γ(k) cos(2πfk). (6.9)

For x̂q, defined by Equation (6.3),

Var [x̂q] =
ρ(0)

N
, (6.10)

where N = n − lF + 1, assuming that N is large. This means that a confidence

interval for Equation (6.3) can be constructed if ρ(f) can be estimated at f = 0.
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This is usually done by transformation of the periodogram to a function J(f), see

e.g. [72-HW81] for details, and a polynomial fit. The polynomial fit is based on

two parameters. The first parameter K is the number of points of J (f) used to

obtain the polynomial fit. The second parameter d is the degree of the polynomial.

In [72-HW81] an algorithm is given to estimate ρ̂(0). In [93-MEP04] the standard

setting d = 2 and K = 25 of this algorithm is discussed. A positive slope of ρ̂(f)

at f = 0 can lead to a too small estimate of ρ(0). Using the maxima of ρ̂(0) for

d = 0 or d = 2 results in more accurate confidence intervals. Finally, a confidence

interval can be derived by assuming that

x̂(q)− F−1
X (q)√

ρ̂(0)
N

(6.11)

is governed by a t-distribution.

Using sorted values of p independent replications, p output processes {yj,i}∞i=lF

are available and Equation (6.3) can be applied for all q̂j , see Equation (6.6), with

1 ≤ j ≤ p. x̂q̂j
and Var

[
x̂q̂j

]
can be calculated for all j separately, as well as the

confidence intervals based on Var
[
x̂q̂j

]
.

In spectral analysis grouping observations in batches for obtaining uncorre-

lated batch statistics is not needed. However, we apply batch means for the pur-

pose of reducing data. This is possible as Var
[
x̂q̂j

]
can also be estimated from the

spectral density function of batch means, using batches of arbitrary size. Batch

mean is explained in detail in the next section. Here, we apply batch means to

reduce data, thus, no statistical test for independence of batch means is necessary.

Equation (6.10) can be extended to

Var [x̂q] =
ρ(0)

N
=
ρB(0)

M
, (6.12)

if the number of batches M is large (see e.g. [72-HW81]). ρB(0) is the power

spectrum of the sequence of the batch means evaluated at zero. Based on this

result we can introduce batch means into spectral analysis. Batching guarantees
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that a constant storage requirement is sufficient for sequential analysis, this will

also be discussed in the next section. More details on sequential spectral analysis

is given in [99-Paw90], where pseudocode of the algorithms and flow charts are

provided.

6.2.2 Non-Overlapping Batch Means

In the last section we described an approach using spectral analysis to estimate

Var
[
x̂q̂j

]
, which can be extended by batching data to obtain a sequential version.

Here, we would like to describe an alternative approach using batch means, exclu-

sively. The literature about batching methods is vast. Possibly one of the earliest

described batching methods for simulation output analysis is [50-Fis78]. The ba-

sic idea is to divide the output process into subsequences of equal size, called

batches. For all batches a batch statistic is calculated, e.g. the batch mean. The

value of this approach is that the batch statistics become approximately indepen-

dent of each other for a large batch size. The assumed near-independence helps

to estimate the variance of the batch statistics. The difficulty of this method is the

determination of an appropriate batch size m. The purpose of batching is either

to produce nearly uncorrelated (secondary) output data or to reduce the size of

output data. Here, it is important to obtain nearly uncorrelated data to estimate

Var
[
x̂q̂j

]
exclusively based on batch mean. Additionally, such batching allows

the reduction of the output data. This is useful in sequential analysis for achieving

constant memory requirements.

For simplicity, we reduce autocorrelation of data by applying non-overlapping

batch means (NOBM), since it will be shown that such an approach can produce

statistically accurate estimates of quantiles. Figure 6.2 shows a schematic diagram

of NOBM applied for every order statistic. The transformed data is given by

zj,i(m) =
1

m

m∑
k=1

yj,(lF +im−k) (6.13)
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Figure 6.2: Schematic diagram of NOBM to estimate Var
[
x̂qj

]
, where 1 ≤ j ≤ p.

with 1 ≤ j ≤ p, 1 ≤ i ≤ nb and nb = n−lF +1
m

. The size of the resulting data

matrix is reduced m times to pnb. The point estimate x̂q̂j
can now be calculated

by

x̂q̂j
=

1

n− lF + 1

n∑
i=lF

yj,i =
1

nb

nb∑
i=1

zj,i(m). (6.14)

This equation is a variation of Equation (6.3), because the sum is over the batch

means. With an appropriate choice of m the batch means zj,1(m), zj,2(m), . . . are

approximately independent of each other. Under this assumption Var
[
x̂q̂j

]
can be

estimated, by

σ2
x̂q̂j

=
1

nb(nb − 1)

nb∑
i=1

(
zj,i(m)− x̂q̂j

)2 (6.15)

as in [50-Fis78]. (x̂q̂j
− F−1

X (q̂j))/σx̂q̂j
is approximately t-distributed with nb

degrees of freedom, thus a confidence interval can be constructed. For every 1 ≤

j ≤ p the expected value E
[
x̂q̂j

]
, its variance Var

[
x̂q̂j

]
and the corresponding

confidence interval can be estimated. We obtain p interval estimates of quantiles

of the steady state distribution FX (x).

To estimate confidence intervals on basis of Var
[
x̂q̂j

]
for all j, representing

rows of the data matrix, an overall batching approach can be performed, which

operates on {yj,i}∞i=lF
for all j in parallel. The determination of an appropriate
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overall batch size m, which is valid for all rows 1 ≤ j ≤ p, is the difficulty.

In previous methods tests for independence based on runs, see [123-Sie56], or

lag-1 autocorrelation, see [84-LC79], are used to detect a valid batch size. Most

lag-1 autocorrelation tests assume normality, which is only approximately true.

For small sample sizes complex corrections of the test statistic are done, see e.g.

[52-FY97]. Therefore, we introduce a heuristic test in Appendix A.1, which is

based on weaker assumptions and promises good performance in our context of

determining the overall batch size m. Our purpose is to find an overall batch

size m that is valid for all rows {yj,i}ni=lF
, where 1 ≤ j ≤ p. An approach

to detect an appropriate value of m is described in Appendix A.1. We apply

this approach by using the batch mean, as defined in Equation (6.13), as batch

statistic sj,i(m) = zj,i(m). Hereby, we do not apply this method on the original

output data of the replications but on the already ordered samples, so that one row

{yj,i}ni=lF
represents the jth order statistic. This is necessary because the batch

means zj,i(m) of these order statistics need to be nearly independent of each other.

In practise this approach appears to be easy to apply and robust for any kind of

output data.

NOBM is a well known approach in the area of mean value estimation. There-

fore, a sequential version of NOBM is also well known, see [99-Paw90]. For a

sequential approach it is quite important to be able to include further output data

into analysis without the need of increasing the storage requirement. This guar-

antees constant storage requirements and the sequential approach can be executed

for arbitrary long simulation runs. A constant storage requirement is sufficient for

sequential batch mean approaches because the batch mean with batch size 2m can
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be calculated by grouping batch means with batch size m:

1

2
(zj,i(m) + zj,i+1(m)) =

1

2m

m∑
k=1

(
yj,(lF +im−k) + yj,(lF +(i+1)m−k)

)
=

1

2m

2m∑
k=1

yj,(lF +i2m−k)

= zj,i(2m) (6.16)

(compare with Equation (6.13)). In Section 5.4.3 we used a similar approach to

obtain a constant memory requirement for a truncation point detection approach.

The drawback of using the batch size m = 2s, where s = 0, 1, 2, . . ., is that the

distance between checkpoints in detection of the batch size m grows over time.

On the other hand we can be assured that the variance of the batch means is not

tested unnecessarily often. Note, that a minimum number of batches nb should be

regarded. In [52-FY97] nb ≥ 32 is recommended and nb = 8 still appears tol-

erable. Furthermore, a minimum batch size m should be regarded. In [2-Ada83]

m ≥ 50 is recommended. These restrictions are needed when applying NOBM

exclusively, because the resulting sequence of batch means has to be nearly inde-

pendent. These restrictions are not needed when applying batching in conjunction

with spectral analysis, because here batching is just needed for data reduction.

Batching in NOBM is available in sequential versions with constant storage re-

quirement. More details on sequential analysis is given in [99-Paw90], where

pseudocode of the algorithms and flowcharts are provided. The run time of our

interval estimator based on NOBM is not an important factor. This is because

we use a batch size m = 2s, where s ≥ 6 for NOBM, which means that the

checkpoints for the stopping criterion are geometrically distributed. This implies

that for a relatively long simulation run not many repeated tests of the stopping

criterion have to be done.
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6.2.3 Sequential Stopping Criteria

In sequential and automated simulation all necessary decisions must be done on-

line. The analyst influences these methods only by parameterisation at the be-

ginning of a simulation experiment. A sequential stopping rule is used to decide

whether the number of observations, which are collected so far, is sufficient to

estimate reliable results or not. For sequential mean value analysis the stopping

criterion is usually based on the relative error, i.e. the standardised halfwidth of

the confidence interval:

∆(n)

X̄(n)
= ε(n) ≤ εmax, (6.17)

where ∆(n) is the halfwidth of the confidence interval of the point estimate X̄(n),

providing that X̄(n) is greater than zero. Both values depend on n, the number of

collected observations of a single simulation run. ε(n) is randomly converging to

zero with increasing n, because the estimate X̄(n) is becoming more precise and

in consequence ∆(n) is decreasing. The collection of observations is continued

until the threshold εmax is greater then the relative error ε(n). A common setting

is εmax ≤ 0.1.

When estimating the steady state probability distribution FX (x) on basis of

several quantiles F−1
X (q0), . . . , F

−1
X (qp) there is also a rule needed, which decides

whether the estimates are statistically accurate or not. A straight forward approach

is to adopt the stopping criterion used in mean value analysis also for quantile

analysis. However, a serious problem arises: It is quite likely for one of the quan-

tiles that F−1
X (qj) ≈ 0. In this case the confidence interval would be standardised

to zero. This leads to an infinite relative error and the stopping criterion cannot be

fulfilled at all. Furthermore, we do not think that it is really desirable to standard-

ise all estimated quantiles by different values. Some quantiles would consume a

lot of simulation time until they are finally able to meet the threshold εmax whereas

other quantiles would fulfil the stopping criterion almost instantaneously.
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The aim of a relative error is to obtain an error that is standardised by the range

of interest. In mean value analysis this is the mean X̄(n) itself. If we estimate

several quantiles x̂q̂j
, see Equation (6.7), the range of interest is the observed part

of FX (x), which is the range x̂q̂p − x̂q̂1 , the difference of the highest and the

lowest order statistic, see Section 2.2.1. The difference x̂q̂p − x̂q̂1 can never be

zero, except for the trivial distribution of a fixed random variable. Therefore, we

propose that the range of F̂X(x) is a good standardisation:

∆q̂j
(n)

x̂q̂p − x̂q̂1

= εq̂j
(n) ≤ εmax, (6.18)

where ∆q̂j
(n) is the halfwidth of the confidence interval of the point estimate x̂q̂j

.

Note, all ∆q̂j
(n) are standardised by the same value, because x̂q̂p − x̂q̂1 does not

depend on q̂j . To be consistent with previous notation we do not explicitly denote

the dependence of x̂q̂j
on n. If a quantile fulfils the stopping criterion given by

Equation (6.18) no further calculations for this quantile are needed because an es-

timate is found which has the demanded confidence level. No further investigation

of this quantile is necessary, even though analysis of other quantiles might con-

tinue. Continuing analysis at this point might result in tiny confidence intervals

which might lead to poor coverage.

6.2.4 Parameterisation

The critical parameter of NOBM is the batch size m, when applying it to receive

nearly uncorrelated data. If m is too small the batch statistics zj,i(m), zj,i+1(m),

. . . cannot be regarded as approximately independent of each other. Ifm is too big

the method is unnecessarily wasteful. For this reason we introduced an approach

in Appendix A.1 that selects m automatically.

The remaining parameters for the batching approach are the number of repli-

cations p, the number of batches nb, the confidence level 1− α and the threshold

εmax, as defined in Section 6.2.2. For experiments in later chapters we use standard
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values α = 0.05 and εmax = 0.05. The number of replications p should be an odd

number, see Section 2.3, and it should be large enough with respect to the homo-

geneity test, see Figure 5.6 in Section 5.3.3. When using the Anderson-Darling

test (see Section 5.3.2) p = 99 guarantees a sample of adequate size. Further-

more, we use nb = 128 because this is an exponent of 2 and normality of the

batch statistics can be assumed.

For spectral analysis the required parameters are the number of replications p,

the number of batchesM , the confidence level 1−α, the threshold εmax, the degree

of the polynomial d and the number of points K, as defined in Section 6.2.1. We

use standard values α = 0.05, εmax = 0.05, d = 2 and K = 50, as recommended

in original publications. Again, we set p = 99 and M = 128 for reasons of

comparison.

6.2.5 Implementation

In this section we will combine all of the topics which are discussed in this chap-

ter so far and we will provide an implementation in pseudocode in Listing 6.1.

This pseudocode is based on C++, however, differences are for example that the

operator “:=” denotes an assignment and the operator “=” denotes equality. It

will be shown in how far statistical techniques, for example the mean of order

statistics (see Equation (6.7)), spectral analysis (see Section 6.2.1), NOBM (see

Section 6.2.2) and the sequential stopping criteria (see Section 6.2.3), can be com-

bined in one single algorithmic approach.

A simplified flowchart of quantile estimation by calculating the mean of or-

der statistics is given in Figure 6.3. A more detailed algorithm can be found in

Listing 6.1. The algorithm starts by automatically selecting a truncation point l

by applying the method described in Chapter 5. Next, the minimum batch size

mmin is selected automatically. If spectral analysis is applied, the setting mmin = 1

is adequate because no independence of batch statistics is assumed. If NOBM is
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report quantile estimates
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Figure 6.3: Simplified flowchart of quantile estimation by the mean of order statis-
tics.

applied, a valid setting of mmin is determined by the approach described in Ap-

pendix A.1. Note that the determination of valid settings of l and mmin can be

done in parallel to the execution of the method of Listing 6.1 to avoid restarting

the simulation processes, this is not shown in Listing 6.1 for reasons of simplifi-

cation. The choice of nb and p is discussed in Section 6.2.4. In Line 5 to Line 8,

variables are defined, which indicate the status of data collection, i.e. the current

observation index n, batch size m, index k within a batch and index b of a batch.

Their valid range is given in comment after their definition. Arrays, which are de-

fined in Line 10 to Line 13, contain the results of the point and interval estimation

of the quantiles. In Line 14, a matrix is defined which is used to store batched

data.
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Listing 6.1: Pseudocode for quantile estimation by the mean of order statistics.
0 i n t l := a u t o S e l e c t ( ) ; / / t r u n c a t i o n p o i n t

i n t mmin := a u t o S e l e c t ( ) ; / / minimum NOBM b a t c h s i z e
i n t nb := 128 ; / / number o f b a t c h e s ( must be even )
i n t p := 99 ; / / number o f r e p l i c a t i o n s

5 i n t n := 0 ; / / 1 ≤ n <∞ ( c u r r e n t o b s e r v a t i o n i n d e x )
i n t m := 1 ; / / 1 ≤ m <∞ ( c u r r e n t b a t c h s i z e )
i n t k := 0 ; / / 0 ≤ k < m ( i n d e x w i t h i n b a t c h )
i n t b := 0 ; / / 0 ≤ b < nb ( i n d e x o f b a t c h )

10 bool q s t o p [p ] := f a l s e ; / / s t o p p i n g c r i t e r i a f u l f i l l e d
double q p r o b [p ] := 0 ; / / p r o b a b i l i t y o f q u a n t i l e
double q pos [p ] := 0 ; / / p o s i t i o n o f q u a n t i l e
double q h a l f [p ] := 0 ; / / h a l f w i d t h o f i n t e r v a l e s t i m a t e
double b a t c h [p ] [ nb ] := 0 ; / / b a t c h e d da ta

15
f o r ( i n t j := 0 ; j < p ;++j ) q p r o b [ j ] := c a l c u l a t e P r o b a b i l i t y ( j + 1 ,p ) ;

bool a l l S t o p p i n g C r i t e r i a F u l f i l l e d := f a l s e ;
whi le (¬ a l l S t o p p i n g C r i t e r i a F u l f i l l e d ){

20 n := n + 1 ;
o b s e r v e (Xn ) ;
i f (n < l ) c o n t in u e ;

Yn := s o r t (Xn ) ;
25 f o r ( i n t j := 0 ; j < p ;++j ){ i f ( q s t o p [ j ]= t rue ) c o n t in u e ;

b a t c h [ j ] [ b ] :=b a t c h [ j ] [ b ]+Yj,n ;
}
k := k + 1 ; i f (k < m ) c o n t in u e ;

30 / / n e x t b a t c h
k := 0 ; b := b + 1 ; i f ( b < nb ) c o n t in u e ;

/ / e v a l u a t i o n o f s t o p p i n g c r i t e r i o n
i f (mmin ≤ m ){

35 f o r ( i n t j := 0 ; j < p ;++j ){ i f ( q s t o p [ j ]= t rue ) c o n t in u e ;
q pos [ j ] := c a l c u l a t e M e a n ( b a t c h [ j ] [ · ] ) ;
double v a r i a n c e := c a l c u l a t e V a r i a n c e ( b a t c h [ j ] [ · ] ) ;
q h a l f [ j ] := c a l c u l a t e H a l f w i d t h ( v a r i a n c e ) ;

}
40 double r a n g e :=q pos [p− 1]−q pos [0 ] ;

a l l S t o p p i n g C r i t e r i a F u l f i l l e d := t rue ;
f o r ( i n t j := 0 ; j < p ;++j ){ i f ( q s t o p [ j ]= t rue ) c o n t in u e ;

i f ( c h e c k S t o p C r i t e r i o n ( q h a l f [ j ] , r a n g e ) ) q s t o p [ j ] := t rue ;
e l s e a l l S t o p p i n g C r i t e r i a F u l f i l l e d := f a l s e ;

45 }
}
i f (¬ a l l S t o p p i n g C r i t e r i a F u l f i l l e d ){

c o l l a p s e ( b a t c h [ · ] [ · ] ) ;
m := m · 2 ; b := nb/2 ;

50 }
}
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The quantile estimation starts by calculating the position of the quantiles in

the domain of the probability. The method calculateProbability of Line 16 imple-

ments Equation (6.6). This can be done before the collection of the data begins.

The loop in Line 19 repeats until the stopping criterion is fulfilled for all quan-

tiles. A set of p new observations is collected in Line 21. The method observe

applies the parallel simulation scenario of Section 3.4. Data of the transient phase

is disregarded by the statement in Line 22. To receive an ordered sequence the

sample of Xn is sorted in Line 24. The loop in Line 25 repeats once for each

order statistic. Within this loop the current batch is updated. To explicitly indicate

which value is used we added the index j to Yn. Note, the batched data is not

divided by the terms of the sum. The if -statement in Line 25 assures the no fur-

ther calculations are done for quantiles, which already fulfil the stopping criteria.

Similar if -statements are also used in Line 35 and Line 42. Line 28 to Line 31

update the current batch and the current index within a batch.

If all batches contain the same number of observation a checkpoint for the

evaluation of the stopping criterion is reached. An evaluation is done only if the

minimum batch size mmin is smaller than the current batch size m, see Line 34.

In the loop in Line 35 the quantile estimation is done. Quantiles, which already

fulfil the stopping criterion are disregarded in this step. The method calculate-

Mean implements Equation (6.7). The method calculateVariance implements

either spectral analysis (see Section 6.2.1) or NOBM (see Section 6.2.2). The

method calculateHalfwidth calculates the halfwidth of the quantile’s confidence

interval. Depending on nb the Student’s t-distribution or normality is assumed.

Note, the degree of freedom is also given by spectral analysis or by NOBM.

Once the estimation of quantiles is done, the stopping criterion can be tested in

Line 40 to Line 45. This is done for each quantile separately. Quantiles, which al-

ready fulfil the stopping criterion are not tested again. The method checkStopCri-

terion implements Equation (6.18). If not all quantiles fulfil the stopping criterion,
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more data needs to be observed. Therefore, the current batch size m is increased

and b is updated. To be conform with the new batch size and to get space for

more observations the matrix batch[·][·] is collapsed by applying Equation (6.16)

in Line 48.

The run time of the method of Listing 6.1 is negligible compared to the run

time which is necessary to create observations. This is because the placement

of checkpoints for testing the stopping criterion is growing geometrically, i.e. the

batch sizem is doubled in Line 49. This assures an efficient run time if the amount

of processed data is large. Storage requirements of this method are constant. The

largest component is probably the matrix batch[·][·]. Due to the method collapse

in Line 48 new observations can be integrated into calculations without increasing

the number of batches.

6.2.6 Discussion

In this section we discuss the advantages and disadvantages of spectral analysis

and NOBM when estimating FX(x). Both methods select a set of quantiles auto-

matically. This is done on basis of the order statistics of the original output data.

This is a great advantage in comparison to Raatikainen’s method where the user

has to select the quantiles herself or himself. In sequential analysis constant mem-

ory requirements are desirable, so that the length of simulation is not bounded by

hardware restrictions, e.g. if there is not enough computer memory.

Some disadvantages remain. The estimation of the quantiles by Equation (6.7)

is based on an unbounded number of samples of fixed sample size p, which is

given by the number of parallel replications. As we have seen in Section 2.2.2

the estimator of the position of a quantile, Equation (2.15), Equation (2.16) and

Equation (2.17), is only asymptotically unbiased. A fixed value p may lead to

biased estimates for some quantiles. Furthermore, the estimated quantiles are

correlated, which is not considered by the stopping criterion.
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These considerations may show that the use of methods, which are well known

for mean value estimation, are not the best for quantile estimation. We demon-

strated how to calculate the confidence interval on basis of the variance of the

sequence of order statistics by batch means and spectral analysis. Alternatively,

the confidence interval could be determined by averaging confidence intervals cal-

culated by Equation (2.13). In the next section we will demonstrate a method of

quantile estimation that tries to eliminate the disadvantages of this approach.

6.3 Pooling Spaced Data

In the previous section we introduced the use of multiple replications for the es-

timation of quantiles. We took advantage of the independence of the replications

and could solve some problems of quantile estimation of dependent data. We used

estimation techniques that are well known for mean value analysis. This leads to

good algorithmic properties. However, some problems remain, like the correlation

between quantiles. In this section we will demonstrate how spacing of data can be

used to extract random samples of almost independent and uncorrelated data from

the original simulation output process. These random samples are united in a pool

of data. Standard methods of quantile estimation, see Section 2.2, are applicable

to this pool of data.

The first step is to find a valid truncation point, as described in Chapter 5. The

remaining output process {Xi}∞lF =i can be assumed to be in its steady state phase,

where lF is the truncation point. We can assume that all random variables of the

output process {Xi}∞lF =i are identically distributed, i.e. Equation (2.5) holds.

Approximate independence within data collected in one replication can be

achieved by establishing a pool of observations, which are spaced far apart from

each other. Let s be the space size. Then xj,lF , xj,lF +s, xj,lF +2s, . . ., where

1 ≤ j ≤ p, can be regarded as nearly independent if s is large enough for all

replications. These spaced observations can be united in an overall random sam-
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Figure 6.4: Schematic diagram of pooling spaced data.

ple by neglecting their observation index lF + si and replication index j. This

leads to a pool of spaced observations, which is given by

{{xj,lF +si}pj=1}∞i=0. (6.19)

Figure 6.4 shows a schematic diagram of pooling spaced data. The size of this

pool is unbounded and it contains approximately independent and identically dis-

tributed data if lF and s are valid choices. The equations of Section 2.2.2 are now

directly applicable to estimate F−1
X (q) because additionally Equation (2.4) holds.

The determination of an adequate value of lF is already discussed in Chap-

ter 5. The determination of s can be done in a similar way, as described in Ap-

pendix A.1. Spacing of output data can be seen as a special kind of batching: Here,

the batch statistic is the first value of a batch, i.e. sj,i(m) = xj,lF +si, and we de-

fine r̂(p)(P1) as Pearson’s correlation coefficient of the original lag-1 paired batch
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Figure 6.5: Simplified flowchart of pooling spaced data.

statistics
{
xj,lF +si, xj,lF +s(i+1)

}∞
i=0

. The median confidence interval is calculated

on basis of permutations of the original sequence, as shown in Appendix A.1. If

the assumption of independence cannot be verified the space size s can be doubled

by skipping every second entry in the pool of spaced observations, followed by

another test of independence. Our choice of s is the minimum value that fulfils

the test of Appendix A.1 for all 1 ≤ j ≤ p.

The basic idea of pooling spaced data is given by a flowchart in Figure 6.5. A

more detailed description are given in Listing 6.2, which shows an implementation

of pooling spaced data in pseudocode. Mainly, the pseudocode is based on the

programming language C++. Note, the operator “:=” is an assignment and the

operator “=” checks equality. The space size s is detected automatically by the

method described in Appendix A.1. The truncation point l is detected by the
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methods of Chapter 5. The number of replications p is an input parameter. The

other parameters 1 ≤ k ≤ s (counter within a space), 1 ≤ i ≤ ∞ (current

simulation length), 1 ≤ n < ∞ (counter of spaces) and 1 ≤ c < ∞ (next

checkpoint) are used to organise the methods prosecution. Note, some of these

variables are initialised outside their valid range. The results of this method are

given by the set of quantiles Q and by the pool of spaced data P . The use of

Listing 6.2: Pseudocode of pooling spaced data.
0 i n t s := a u t o S e l e c t ( ) ; / / 1 ≤ s <∞ ( space s i z e )

i n t l := a u t o S e l e c t ( ) ; / / 1 ≤ l <∞ ( t r u n c a t i o n p o i n t )
i n t p ; / / 30 ≤ p <∞ ( number o f r e p l i c a t i o n s )

i n t k := 0 ; / / 1 ≤ k ≤ s ( i n d e x w i t h i n space )
5 i n t i := 0 ; / / 1 ≤ i <∞ ( c u r r e n t o b s e r v a t i o n i n d e x )

i n t n := 0 ; / / 1 ≤ n <∞ ( i n d e x o f space )
i n t c := 1 ; / / 1 ≤ c <∞ ( c h e c k p o i n t )

s t r u c t q u a n t i l e {
10 double p r o b a b i l i t y ;

i n t r a n k c e n t r e ;
i n t r a n k l o w e r ;
i n t r a n k u p p e r ;

} ;
15

q u a n t i l e Q [ ] ; / / ( s e t o f q u a n t i l e s )
double P [ ] ; / / ( poo l o f spaced da ta )

bool S t o p p i n g C r i t e r i o n I s F u l f i l l e d := f a l s e ;
20 whi le (¬ S t o p p i n g C r i t e r i o n I s F u l f i l l e d ){

i := i + 1 ;
o b s e r v e (Xi ) ;
i f ( i < l ) c o n t in u e ;

25 k := k + 1 ;
i f (k < s ) c o n t in u e ;
P :=merge (P , s o r t (Xi ) ) ;
n := n + 1 ;
k := 0 ;

30
i f (n < c ) c o n t in u e ;
Q := c a l c u l a t e S e t O f Q u a n t i l e s (n · p ) ;
S t o p p i n g C r i t e r i o n I s F u l f i l l e d := c h e c k S t o p p i n g C r i t e r i o n (Q ,P ) ;
c := c · 2 ;

35 }
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efficient data structures for Q and P are quite important, because their size grows

as the simulation progresses and, especially P , can be large. We recommend to

use the C++ Standard Template Library and to used the template list to implement

P because it supports sorting, merging and extending the data sample. The loop

in Line 20 repeats until the stopping criterion, see Section 6.3.1, is fulfilled. A

new random sample consisting of p observations is collected in Line 22. Hereby,

we apply the parallel simulation scenario which is discussed in Section 3.4. Data

of the transient phase is ignored, see Line 23. Line 26 checks if the space between

the current observation index i and the last stored sample is large enough. If this

is the case, the new collected random sample is sorted and merged into the pool of

spaced data in Line 27. Note, here we store the data of the last observation index

within a space (or batch). If a checkpoint is reached, see Line 31, the method of

Section 2.3 is performed in Line 32 for a sample size of np observations. This

method returns a set of quantiles Q with disjoint confidence intervals given by its

probability and the ranks of the point estimate and the lower and upper bound of

the interval estimate, see Line 9 to Line 14. These ranks point at observations

in the sorted pool P . In Line 33, Q and P are examined if the estimates fulfil

the stopping criterion. The worst case execution time of Listing 6.2 is of minor

interest. Because of the choice of checkpoints of the stopping criterion, which

are placed at observation indexes c = 2j , where j = 0, 1, 2, . . ., the run time of

Listing 6.2 is negligible compared to the creation of observations by the simulation

process itself, if efficient data structures are used. The storage requirement is of

greater interest due to the growing size of Q and P . The size of Q is smaller than

the size of P because Q contains only a small selection of quantiles pointing at

ranks in P . More details about the size of the pool P and the run time of sorting

and merging are given in the discussion about sequential aspects of this method in

the following section.
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6.3.1 Sequential Approach and Stopping Criteria

Quantile estimators, as for example Equation (2.15), Equation (2.16) and Equa-

tion (2.17), are usually approximately unbiased provided the sample size is large.

Therefore, it is quite important for a sequential approach to be able to extend the

sample size. As we have mentioned before, the sample size of {{xj,lF +si}pj=1}∞i=0

is unbounded. By adding an additional sequence {xj,lF +s(n+1)}pj=1 of previously

unprocessed observations the sample size can be extended.

For quantile estimation based on order statistics the sample has to be sorted.

The most efficient way of sorting in this case is to merge two already sorted sam-

ples. Let assume that {{xj,lF +si}pj=1}ni=0 with size pn is already sorted. The new

sample {xj,lF +s(n+1)}pj=1 can be sorted in O (p log(p)). Merging of the two sam-

ples can be done in O (pn+ p). So the total runtime of adding new observations to

a sorted pool of spaced data is O (p log(p) + p(n+ 1)). Because usually n >> p

holds, we can simplify the runtime to O (pn), which is efficient.

Because our aim is to estimate FX(x) on basis of several quantiles, we select

quantiles as described in Section 2.3. This guarantees that the confidence inter-

vals of the selected quantiles do not overlap and it implies that their probability

mass is distributed to different order statistics, see Equation (2.13). Hereby, high

correlation between quantile estimates can be avoided. How many quantiles are

selected, depends on the sample size pn.

Here, a stopping criterion could be defined by simply requiring a minimum

number of quantiles to be selected with disjoint confidence intervals. The bigger

the sample size the more quantiles can be selected by the approach described in

Section 2.3. The simulation experiment could be stopped if the sample is large

enough to estimate the minimum number of quantiles with disjoint confidence

intervals.

On the other hand, a stopping criterion could depend on the size of the confi-

dence interval. Let Pr [Yl ≤ xq ≤ Yu] ≥ 1 − α be a balanced confidence interval
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for xq, as defined in Section 2.3. Similar to Equation (6.18), we can define

Yu − Yl

2(Ypn − Y1)
≤ εmax, (6.20)

where Yi denotes the ith order statistic of the pooled observations of size pn.

Yu − Yl is divided by 2 to produce the halfwidth. It is standardized by the range

Ypn−Y1 to avoid a division by a value close to zero, as discussed in Section 6.2.3.

Pseudocode of the stopping criterion defined by Equation (6.20) is given in

Listing 6.3. The variables and structures n, p, Q and P are defined as in List-

ing 6.2. The user specified parameter εmax is defined in Equation (6.20). The

statement in Line 7 loops over all selected quantiles in Q. For each entry Equa-

tion (6.20) is checked in Line 10. If no quantile violates this equation the stopping

criterion is fulfilled.

6.3.2 Parameterisation

Similar to the batching approach, the difficulty is estimating the space size s be-

cause it depends on the correlation of the output process. We have demonstrated

an approach to determine a valid s automatically, which is similar to the determi-

nation of a valid batch size, see Appendix A.1.

Listing 6.3: Pseudocode of the stopping criterion defined by Equation (6.20).
0 double εmax ; / / 0 < εmax ≤ 0.01 ( maximum r e l a t i v e e r r o r )

i n t n ,p ;
q u a n t i l e Q [ ] ; / / ( s e t o f q u a n t i l e s )
double P [ ] ; / / ( poo l o f spaced da ta )

5 double r a n g e := P [0]−P [n · p− 1 ] ;
bool S t o p p i n g C r i t e r i o n I s F u l f i l l e d := t rue ;
f o r ( i n t j := 0 ; j < s i z e o f (Q ) ; + + j ){

i n t l r a n k :=Q [ j ] . r a n k l o w e r ;
i n t u r a n k :=Q [ j ] . r a n k u p p e r ;

10 i f ( ( P [u r a n k ]−P [ l r a n k ] ) / ( 2· r a n g e )> εmax ){
S t o p p i n g C r i t e r i o n I s F u l f i l l e d := f a l s e ;
break ;

}
}
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The only remaining parameters are the confidence level 1−a of the confidence

intervals and the threshold εmax of the stopping criterion. We use α = 0.05 and

εmax = 0.05.

Note, this method can deal with any number p of replications. However, for

the detection of the truncation point lF a minimum of p > 30 is needed, see

Chapter 5.

6.3.3 Discussion

The first advantage of the quantile estimation method of this section is its sim-

plicity. Only standard methods for quantile estimation are used. Furthermore,

the parameterisation is straight forward. Quantiles of FX(x) are chosen automat-

ically so that high correlation between them is avoided. This is a great advantage

compared to the methods described in Section 6.2.

The disadvantage of this method is that the memory requirement is not con-

stant. The size pn of the pooled data does grow during simulation. However, this

should not be a problem because pn does not depend on the correlation of the

original simulation output process due to the space s. The size pn depends on

εmax. Experiments show that for e.g. εmax = 0.05 the needed sample size is much

smaller than the usual size of computer memory.

6.4 Validation and Comparison

In Section 6.1 we discussed Raatikainen’s method, which is frequently used for

estimation of proportions. We noted that this method has adequate statistical prop-

erties. However, as already pointed out, it is not the best choice for automated

analysis of the steady state distribution function. Therefore, we demonstrated new

or extended methods for quantile estimation in Section 6.2 and Section 6.3. The

properties of these methods, like e.g. low bias, are already discussed. Here, we

would like to test these methods on selected examples and study their properties
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experimentally.

In the next section details of our experimental analysis are given. We will use

different techniques of assessing the quality of estimation results. The results of

our comparative studies of these techniques are obtained by applying them to a

set of representative scenarios.

6.4.1 General Approach

To be able to assess quality of the methods used for estimating quantiles we are

limited to examples with known or analytically tractable steady state behaviour.

For every example we plot the estimated distribution function, i.e. the estimated

set of quantiles connected by a simple line, to give a visual impression of the

results. This distribution is derived from the results of only one single simulation

experiment. The seed of this simulation experiment is randomly selected. To

have better insight into the results, we compare the known probability distribution

function with the estimated probability distribution function by a Q-Q (quantile-

quantile) plot, whenever it appears to be useful .

Another possibility would be to compare the estimated CDF with the known

CDF by a homogeneity test. However, this approach is not advisable. The homo-

geneity test will never reject the hypothesis of equality in distribution of random

samples, because all Xi with i ≥ lF are already proven to be identically dis-

tributed among each other by this homogeneity test. This is why we do not apply

a homogeneity test at this stage. We will focus on each estimated quantile instead.

A more accurate way of assessing the statistical quality of the method used for

estimation of quantiles is to apply coverage analysis of their confidence intervals.

This is done according to [103-PME98]. The coverage analysis is done sequen-

tially until a certain precision of the point estimate of the coverage is reached and

a minimum number of “bad” confidence intervals have been detected. A bad con-

fidence interval is one that does not contain the theoretical result. The precision is
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Figure 6.6: Evolution of the coverage of a quantile.

here the halfwidth of the coverage’s confidence interval, which is given by

z1−α
2

√
c(1− c)
nc

, (6.21)

where zq is the q-quantile of the standard normal distribution, c is the coverage

and nc is the number of coverage experiments. Here, the threshold for acceptable

precision is taken to be 0.025 at 0.95 confidence level. This assures that the cover-

age convergence curves reach a stable level for the examples in this section, as one

can see in Figure 6.6. In this figure an example of the convergence of the coverage

is depicted, the abscissa shows the number of simulation experiments conducted

for coverage analysis and the ordinate shows the current value of coverage. Addi-

tionally, the halfwidth and the confidence interval of the coverage is plotted. The

initial part of the curve shows that the convergence is not monotonic because each

bad confidence interval leads to a sudden drop off in the curve. However, we can

see that at a precision at 0.025 the impact of a bad confidence interval is limited
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and the curve appears to be flat and we use this value for all our experiments. We

did coverage analysis of this kind for all experiments in this section, the conver-

gence of the coverage is in all cases similar to Figure 6.6 and, therefore, we will

not depict it separately. In addition to coverage analysis we plot the distribution

of the estimated quantiles and compared their average with the known position

whenever we thought it might provide a deeper inside.

The size of the horizontal error bars in the figures showing the coverage, e.g.

Figure 6.10, is calculated by Equation (6.21). We operate with a predefined pre-

cision and, thus, the error bars have the same length, in general. Exceptions occur

either if it is difficult to observe bad confidence intervals or if it is difficult to

observe good confidence intervals. In both cases the wanted precision might be

reached very fast so that it is necessary to continue coverage analysis until a suit-

able amount of both, bad and good confidence intervals, is collected. An example,

where it is difficult to observe bad confidence intervals, is given in Figure 6.14(c).

The opposite situation, where it is difficult to observe good confidence intervals,

is given in Figure 6.23(b): compare the lowest depicted quantile with error bars

with all other quantiles. This explains why the length of the error bars might vary

from method to method. The length of error bars might also vary for the different

quantile estimates of the same method. This is because coverage analysis was per-

formed in parallel on all selected quantiles and was stopped when each quantiles

reached the predefined precision. Coverage analysis for quantiles, which reached

the predefined precision earlier, was continued for reasons of simplicity.

We limit our discussion to statistical accuracy of estimates and do not inves-

tigate the efficiency in terms of the number of used observations in detail. This

is because our analysis is done at checkpoints placed with geometrically growing

distance, which makes a comparison difficult. The speed of collecting output data

using multiple replications is also difficult to compare with the speed of data col-

lection using one single run. Furthermore, the execution time of one simulation
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Figure 6.7: Exact and estimated CDFs of basic processes with normal distribution:
N (x; 0, 1).

experiment of the following examples is rather short and not an issue anyway.

6.4.2 Basic Processes

In this section we test the methods of Section 6.2 and Section 6.3 on some very

basic processes. These basic processes do not have a transient period and they are

not autocorrelated. Therefore, they provide observations which are independent

and identically distributed. The trivial choices of the truncation point lF = 1,

the batch size m = 1 and the space size s = 1 are adequate and selected by

the method of Appendix A.1 automatically. Furthermore, the periodogram is flat,

which is used in spectral analysis. This allows us to test the quantile estimators

themselves, independent of other parts of the methods, on basis of independent

and identically distributed data. The steady state probability distribution function

of those basic processes is normal, uniform or exponential.

In our first example all Xi are taken from the standard normal distribution:

∀(1 ≤ i ≤ ∞) : FXi
(x) = N (x; 0, 1) . (6.22)

Here, the quantile estimators based on NOBM and spectral analysis use Equa-

tion (2.17). The quantile estimator based on pooling of spaced data always uses
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Figure 6.8: Exact and estimated CDFs of basic processes with uniform distribu-
tion: U (x; 0, 1).

Equation (2.15). Because its pool of observations is growing over time this is a

valid approach (compare [33-DJ54]). The estimated probability distribution func-

tions of all methods are depicted in Figure 6.7. Very little difference to N (x; 0, 1)

can be seen. All estimated functions seem to be accurate estimates. In Figure 6.10

the coverage of all quantile estimates of each method is depicted separately. The

abscissa shows the position of the quantiles in the range of probability. The or-

dinate shows the coverage of the belonging confidence interval. The expected

coverage is 0.95. To achieve a clear arrangement we depicted the confidence in-

terval of the coverage for selected quantiles only. We can see that the coverage of

nearly all estimates is as expected. Exceptions are the estimates of extreme quan-

tiles of the NOBM approach and spectral analysis. Those methods depend on a

fixed sample size and even though they use the more specialised Equation (2.17)

the extreme quantiles are biased. Extreme quantiles are those who are located

in areas where the probability density function fX(x) is a value close to zero.

The normal distribution is tailed towards −∞ and∞. So, extreme quantiles are

located on both sides of the distribution.
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Figure 6.9: Exact and estimated CDFs of basic processes with negative exponen-
tial distribution: Exp (x; 1).

All Xi are taken from the uniform distribution in our second example:

∀(1 ≤ i ≤ ∞) : FXi
(x) = U (x; 0, 1) . (6.23)

In this example all methods use Equation (2.15). The estimated probability dis-

tribution functions appear to be indistinguishable from U (x; 0, 1), see Figure 6.8.

And the results of the coverage analysis is even better, see Figure 6.11. All results

are as expected, as in this case there are no extreme quantiles.

Our third example is done with all Xi negative exponentially distributed:

∀(1 ≤ i ≤ ∞) : FXi
(x) = Exp (x; 1) . (6.24)

The NOBM approach and spectral analysis use Equation (2.16), the pooling ap-

proach uses Equation (2.15). The estimated probability distribution functions are

depicted in Figure 6.9. Again, there seems to be no discernible difference to

Exp (x; 1). Figure 6.12 shows that the coverage of nearly all quantile estimates

is as expected. Again, the NOBM approach and spectral analysis have problems

with extreme quantiles, which are located on the right side of the distribution.

We can say that all estimated probability distribution functions are close to

the exact distribution, even though the approach of Section 6.2 shows some prob-
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lems with extreme quantiles. The pooling approach estimates all quantiles with

expected coverage and is therefore the most advisable method for these basic pro-

cesses. These quantile estimation methods are designed for autocorrelated output

processes, however, these examples show that they are applicable on uncorrelated

output processes.
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Figure 6.10: Coverage (ordinate) of the q-quantile (abscissa) of a basic process
with normal distribution N (x; 0, 1).
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Figure 6.11: Coverage (ordinate) of the q-quantile (abscissa) of a basic process
with uniform distribution U (x; 0, 1).
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Figure 6.13: Exact and estimated CDFs of a geometrical ARMA(k, k) process.

6.4.3 ARMA Processes and M/M/1 Queues

Let us look at cases where special estimators for the underlying distribution func-

tions are known. In this section we perform quantile estimation on processes

similar to those that arise in simulation models. Their output processes are auto-

correlated and show an initial transient behaviour. Their steady state distribution

functions follow Equation (2.17) or Equation (2.16). In contrast to the exper-

iments of the previous section, here, methods are needed to receive secondary

data, which is independent and identically distributed.

As first example we use the geometrical ARMA(k, k) process, which is de-
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fined in Equation (A.11). We prove in Appendix A.2 that for order k = 1

the steady state distribution function is N
(
x; 2, 7

3

)
and for order k = 2 it is

N
(
x; 4, 117

25

)
. The NOBM approach and spectral analysis use Equation (2.17),

the pooling approach uses Equation (2.15). In Figure 6.13 the estimated CDFs

are compared with the exact CDF. All estimated distributions appear to be very

close to the exact distribution. Even though the geometrical ARMA(k, k) process

is strongly autocorrelated for order k = 2, no difference in quality of the esti-

mates can be seen. In Figure 6.14 and Figure 6.15 the coverage of the quantile

estimates is depicted for all methods separately. We can see that the coverage

of extreme quantiles, which are estimated by the NOBM approach, is not as ex-

pected. The coverage of all quantiles which are estimated by the pooling approach

is as expected, even the coverage of extreme quantiles. A typical space size when

pooling spaced data is s = 4 (for k = 1) and s = 16 (for k = 2). Typical val-

ues of the minimum batch size when using NOBM are m = 16 (for k = 1) and

m = 32 (for k = 2). When performing spectral analysis no batching was nec-

essary. Because the batch and the space size are growing geometrically we state

typical values only.
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Figure 6.14: Coverage (ordinate) of the q-quantile (abscissa) of a geometrical
ARMA(1, 1) process with normal distribution.
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In our next set of experiments we use the response time of an M/M/1 queue

as the output process Xi. The simulation starts with an empty queue and idle

server. We simulated this queueing system assuming different traffic intensities

ρ = λ
µ

, where λ = {0.5, 0.75, 0.9} and µ = 1, to obtain output processes with

low, medium and high autocorrelation. Higher values of ρ are difficult to access

because they lead to extremely long simulation runs. The estimated steady state

distribution functions are depicted in Figure 6.16. Comparing these estimates

with the known steady state distribution function FR∞(x) = 1 − e−xµ(1−ρ), see

[75-Jai91], we can detect nearly no difference. The NOBM approach and spec-

tral analysis are using the more specialised Equation (2.16), whereas the pooling

approach simply uses Equation (2.15). Even the estimates at high traffic inten-

sity ρ = 0.9 are very close to the exact distribution. To get a deeper insight we

performed coverage analysis of the confidence intervals of the estimated quantiles

(see Figure 6.17, Figure 6.18 and Figure 6.19). Here, we can see again that the

coverage is as expected, in general. However, the coverage of extreme quantiles

estimated by the NOBM approach and spectral analysis is lower as expected. The

coverage of quantiles which are estimated by the pooling approach is always as

expected. A typical space size when pooling spaced data is s = 16 (for ρ = 0.5),

s = 64 (for ρ = 0.75) and s = 512 (for ρ = 0.9). Typical values of the minimum

batch size when using NOBM are m = 16 (for ρ = 0.5), m = 256 (for ρ = 0.75)

andm = 1024 (for ρ = 0.9). When performing spectral analysis typically batches

of size m = 4 (for ρ = 0.5), m = 32 (for ρ = 0.75) and m = 64 (for ρ = 0.9)

were used just to reduce storage requirements, they are not essential to spectral

analysis.

To show the dependence of the coverage on the strength of autocorrelation

we varied the traffic intensity ρ and we performed more simulation experiments

with λ = {0.5, 0.55, 0.6, . . . , 0.95} and µ = 1. We calculated the coverage of the

estimated median and depicted these results in terms of the traffic intensity ρ in
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Figure 6.20. The pooling approach shows good coverage, almost independent of

ρ. The coverage of the NOBM approach is a little bit lower than expected and

shows a decreasing trend towards higher ρ. The coverage of spectral analysis is

for low and medium traffic intensities even a little bit higher than expected. This

might be caused by batching of the data during spectral analysis. For higher traffic

intensities it decreases faster than the curve of the NOBM approach. Again, the

pooling approach seems to deliver the best results.

The experiments in this section show that all three methods are able to deal

with transient and autocorrelated output processes. The estimated probability dis-

tribution functions are very close to their expectation. Coverage analysis reveals

that coverage of extreme quantiles estimated by NOBM and spectral analysis are

not as expected, these estimates can be biased. The pooling approach delivers the

best results, even though both other methods are more specialised to the given

distributions by using Equation (2.16) and Equation (2.17).
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Figure 6.16: Exact and estimated CDFs of the response time of an M/M/1 queue
with various traffic intensities ρ.
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Figure 6.17: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/M/1 queue with traffic intensity ρ = 0.5.
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Figure 6.18: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/M/1 queue with traffic intensity ρ = 0.75.
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Figure 6.19: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/M/1 queue with traffic intensity ρ = 0.9.
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Figure 6.20: Coverage in dependence of the traffic intensity ρ of the median of
the response time of the M/M/1 queue.
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6.4.4 M/E2/1 and M/H2/1 Queues

Let us look at examples where no special estimators for the underlying distribu-

tions are known. In this section we will perform experiments with M/E2/1 and

M/H2/1 queues. Their output processes are transient and autocorrelated. Fur-

thermore, their steady state distribution function does not fit optimally to Equa-

tion (2.15), Equation (2.16) or Equation (2.17), because it is not a uniform, nor-

mal nor an exponential distribution. This situation is common to most simulation

experiments in general as the class of the steady state distribution is usually un-

known. Here, we compare with the theoretical steady state distribution functions,

which are derived analytically in Appendix A.4 and Appendix A.5. These distri-

butions are needed during coverage analysis.

Similar to our experiments with an M/M/1 queue we choose different traffic

intensities ρ for the M/E2/1 queue. Here, µ denotes the service rate of a single

stage of the Erlang distribution. Thus, the traffic intensity is given by ρ = 2λ
µ

in

this case. The M/E2/1 queue has a lower service time variance because its coeffi-

cient of variation, i.e. standard deviation divided by mean of the service time, is

lower than 1. We set λ = 1 for all experiments and adjusted µ = { 1
0.25

, 1
0.375

, 1
0.45
}

to produce ρ = {0.5, 0.75, 0.9}. The NOBM approach and spectral analysis use

Equation (2.16), whereas the pooling approach uses Equation (2.15). Figure 6.21

shows that the estimated probability distribution functions are nearly identical

with the exact distribution. This is true for all methods and for all values of ρ.

However, the coverage of the quantile estimates is as expected only for the pool-

ing approach. This can be seen in Figure 6.22, Figure 6.23 and Figure 6.24 for the

different values of ρ. The coverage of the NOBM approach and spectral analysis

is not as expected at all. Even some quantiles, which are not extreme in sense of a

low value fX(x), show a level of coverage which is far beyond the expected value.

This can be explained by the use of Equation (2.16), it is the best choice only for

exponential distributions. Because the sample size p is fixed for the NOBM ap-
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Figure 6.21: Exact and estimated CDFs of the response time of an M/E2/1 queue
with various traffic intensities ρ.
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Figure 6.22: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/E2/1 queue with traffic intensity ρ = 0.5.
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Figure 6.23: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/E2/1 queue with traffic intensity ρ = 0.75.
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Figure 6.24: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/E2/1 queue with traffic intensity ρ = 0.9.
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proach and spectral analysis, the approximate properties of Equation (2.16) are

not strong enough. The estimate of some quantiles will be biased and we can ex-

pect that wherever the given distribution has a different form than the exponential

distribution the coverage is poor. However, the form of the estimated distribution

is still closer to an exponential distribution than to a uniform or normal distribu-

tion. Thus, Equation (2.15) or Equation (2.17) will not provide better results. A

typical space size when pooling spaced data is s = 16 (for ρ = 0.5), s = 64

(for ρ = 0.75) and s = 256 (for ρ = 0.9). Typical values of the minimum batch

size when using NOBM are m = 16 (for ρ = 0.5), m = 128 (for ρ = 0.75) and

m = 512 (for ρ = 0.9). When performing spectral analysis typically batches of

size m = 4 (for ρ = 0.5), m = 32 (for ρ = 0.75) and m = 64 (for ρ = 0.9) were

used to reduce storage requirements.

The next set of experiments is done with the M/H2/1 queue. It has a coefficient

of variation of the service time greater then 1. In all our experiments we set λ = 1,

therefore, the traffic intensity is given by ρ = p
µ1

+ 1−p
µ2

, where p is the probability

of using service rate µ1 and 1 − p is the probability of using service rate µ2. To

obtain ρ = {0.5, 0.75, 0.9} we set p = 0.2113248654,

µ1 = {0.8452994616, 0.5635329745, 0.4696108120} and

µ2 = {3.154700538, 2.103133692, 1.752611410}.

These settings give a squared coefficient of variation of 2 and use the common

device of balanced means, i.e. p
µ1

= 1−p
µ2

. As we can see in Figure 6.25 the esti-

mated steady state distributions are nearly indistinguishable from the theoretical

distribution for all of the three methods. However, the coverage analysis reveals

that the pooling approach delivers the best results because its coverage is always

as expected, see Figure 6.26, Figure 6.27 and Figure 6.28. The coverage of the

NOBM approach and spectral analysis is poor for some quantiles. This is due

to Equation (2.16) and a fixed p, as already pointed out, this equation is the best
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Figure 6.25: Exact and estimated CDFs of the response time of an M/H2/1 queue
with various traffic intensities ρ.
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Figure 6.26: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/H2/1 queue with traffic intensity ρ = 0.5.
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Figure 6.27: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/H2/1 queue with traffic intensity ρ = 0.75.
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Figure 6.28: Coverage (ordinate) of the q-quantile (abscissa) of the response time
of the M/H2/1 queue with traffic intensity ρ = 0.9.
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choice only for exponential distributions.

A typical space size when pooling spaced data is s = 16 (for ρ = 0.5), s = 128

(for ρ = 0.75) and s = 1024 (for ρ = 0.9). Typical values of the minimum batch

size when using NOBM are m = 32 (for ρ = 0.5), m = 512 (for ρ = 0.75) and

m = 1024 (for ρ = 0.9). When performing spectral analysis typically batches of

size m = 4 (for ρ = 0.5), m = 32 (for ρ = 0.75) and m = 128 (for ρ = 0.9)

were used to reduce storage requirements. It is quite surprising that the coverage

of the NOBM approach and spectral analysis is so poor, despite the fact that the

estimated distributions are nearly indistinguishable from the exact distribution.

For this reason we depicted the Q-Q plot for the M/E2/1 queue in Figure 6.29 and

for the M/H2/1 queue in Figure 6.30 with ρ = 0.9. In our Q-Q plots the estimated

quantiles (ordinate) are shown in dependence of the exact quantiles (abscissa). In

the best case the resulting curve should be linear. In all our Q-Q plots we can see

a nearly linear curve, except extreme quantiles differ from the linear form. This

indicates again that the estimated distribution is nearly indistinguishable from the

exact distribution. However, the reason why the coverage is quite poor can be

understood by drawing the distribution function of the quantile estimate itself.

In Figure 6.31 we show results of the M/E2/1 queue with ρ = 0.9, where the

empirical CDF of the 5th order statistic is shown, which represents a quantile with

poor coverage, see arrows in Figures 6.24(b) and 6.24(c). According to Equa-

tion (2.16) this order statistic represents the quantile at q = i
p+ 1

2

= 0.0502513,

where i = 5 and p = 99. Furthermore, according to the exact distribution

F−1
X (q) = 0.609874 (dashed arrows in Figures 6.31(a) and 6.31(b)). The aver-

ages of all estimates (bold arrows in Figures 6.31(a) and 6.31(b)) are F̂−1
X (q) =

0.601677 and F̂−1
X (q) = 0.601701 for the NOBM approach and spectral analy-

sis, respectively. The difference |F−1
X (q) − F̂−1

X (q)| is in both cases smaller than

0.0082, which is a really small value and is too small to be detected by a visual

inspection of the graph of the CDF in Figure 6.21(c). In Figure 6.31 we can see
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Figure 6.29: QQ-plot of the exact and estimated CDF of the response time of an
M/E2/1 queue with traffic intensity ρ = 0.9.
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Figure 6.30: QQ-plot of the exact and estimated CDF of the response time of an
M/H2/1 queue with traffic intensity ρ = 0.9.
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Figure 6.31: Empirical CDF of the 5th order statistic (p = 99) for an M/E2/1
queue with traffic intensity ρ = 0.9.
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Figure 6.32: Empirical CDF of the 5th order statistic (p = 99) for an M/H2/1
queue with traffic intensity ρ = 0.9.
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that the distribution of the estimates is very focused. For example the observed

range of the distribution of the estimates of the NOBM approach is smaller than

0.14, which is tiny compared to the observed range of the underlying distribu-

tion of the response time, which is greater than 30. The confidence intervals of

the estimates are similarly small. This is why the coverage is quite poor in this

example. For the 5th order statistic in the example of the M/H2/1 queue with

ρ = 0.9, see arrows in Figures 6.28(b) and 6.28(c), we can draw similar conclu-

sions. Here, we expect F−1
X (q) = 0.381642 (dashed arrows in Figures 6.32(a) and

6.32(b)). The average of all estimates (bold arrows in Figures 6.32(a) and 6.32(b))

are F̂−1
X (q) = 0.389277 and F̂−1

X (q) = 0.389866 for the NOBM approach and

spectral analysis, respectively. The differences |F−1
X (q) − F̂−1

X (q)| < 0.0083 are

very similar and really small. Again, the bad coverage can be explained by the

focused distribution of the estimates.

6.4.5 Verification for the M/E2/1 Queue

In the previous section we demonstrated that bad coverage of the final quantile

estimates appears for methods, which are based on mean value estimation. This

indicates that bad coverage is caused by the bias, see Equation (2.2), of the point

estimate and not by the size of the interval estimate. The estimated halfwidth

of the NOBM approach or spectral analysis does not seem to be the source of

the problem. One reason for the bias is that Equation (2.16) is the best choice

for a true exponential distribution only. The second reason is that the methods,

which are derived from mean value analysis, operate with a fixed sample size p.

This might be not sufficient for some quantiles. The assumption of a large p in

Corollary 6.2.2 is violated.

To clearly show that the bad coverage is cause by the point estimator’s bias we

perform simulation experiment with a basic process, as in Section 6.4.2. Here, the

distribution of each Xi is the exact steady state distribution of the M/E2/1 queue
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for ρ = 0.9 and there is no autocorrelation present. We set all parameters as

described in the previous section and forced the NOBM approach to use the same

batch size as in the autocorrelated case. If the bad coverage is caused by the point

estimator’s bias, we expect that quantile estimates with negligible bias will have

a coverage close to 1 because the batch size is higher than necessary. We expect

that coverage of biased estimates will be close to 0 and even worse than before

because the distribution of the estimates of the basic process are more focused due

to better statistical properties of the output process.

The simulation results for spectral analysis are shown in Figure 6.33. We can

see that the form of the curve in Figure 6.33(a) is similar to the curve in Fig-

ure 6.24(c). Quantile estimates without bias show a coverage of 1, because here

the output data is uncorrelated but the used batch sizes are valid for autocorrelated

output data. The coverage of the estimate of the 5th order statistic is close to 0.

In Figure 6.33(b) we can see that the distribution of these estimates is even more

focused than in Figure 6.31(b). According to Equation (2.16), the 5th order statis-

tic represents the quantile q = i
p+ 1

2

= 0.0502513 with F−1
X (q) = 0.609874. The

average of all quantile estimates at q is F̂−1
X (q) = 0.601605. Therefore, the bias

F−1
X (q) − F̂−1

X (q) ≈ 0.0082 is comparable to the experiments with the M/E2/1

queue. This result supports our previous statement that the estimator defined in

Equation (2.16) is not accurate because the number of replications p should not

be fixed.

Coverage analysis is commonly used to test the quality of an interval estimate.

In the case of an M/E2/1 or M/H2/1 queue the point estimate is already biased.

Coverage analysis might not be an appropriate measure in this case. However,

the results in this section show that the bad coverage is caused by not entirely

fulfilling the assumptions of Corollary 6.2.2. The estimation of the variance by

NOBM or spectral analysis is clearly not the source of error.

On basis of the experiments with the M/E2/1 and M/H2/1 queues we can con-
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Figure 6.33: Results for the basic process distributed as the steady state distribu-
tion of the M/E2/1 queue for ρ = 0.9.
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clude that the results of the pooling approach are the best. This is due to the grow-

ing sample size of the pool of observations. The estimates of the NOBM approach

and spectral analysis are biased because p is a constant value and Equation (2.16)

is not the best choice. It might be possible to find an even more specialised trans-

formation. However, we are interested in a general solution for automated simu-

lation, thus, this is not regarded any further. The NOBM approach and spectral

analysis cannot benefit from a growing sample size because just the mean of the

rank statistics is becoming more precise. Each rank provides a biased estimate

because p is constant and too small.

6.5 Limits and Conclusion

All experiments in this section clearly indicate that the quantile estimator, which

is based on pooling spaced data, see Section 6.3, has the best statistical properties.

The growing size of the pool of spaced observations guarantees that the bias due to

Equation (2.15) is small. The detection of the truncation point assures that the data

is identically distributed and the selection of the space size transforms the data into

a sample of independent observations. The coverage of the confidence intervals

of estimated quantiles is as expected, even for extreme quantiles. The form of

the underlying probability distribution function is not significant, neither is the

form of the transient behaviour or the degree of autocorrelation. The underlying

CDF can be approximated by drawing a curve through the estimated quantiles.

This curve is nearly indistinguishable from the expected curve of the underlying

distribution. The parameterisation of this method does not contain any critical

parameters. A disadvantage is the growing size of the pool of spaced observations.

However, this size is just depending on the parameterisation and not on properties

of the output process. All in all, this method should be preferred because of its

statistically reliable results.

The advantage of the quantile estimators, which are based on NOBM and spec-
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tral analysis, see Section 6.2, is the guarantee of constant storage requirements.

Both methods operate on a constant number of batches. The drawback is that

the assumptions of Theorem 6.2.1 cannot be fulfilled completely. p is assumed

to be large to assure an unbiased estimate. Our experience show that a common

setting of p = 99 is too small for extreme quantiles. This can be compensated

by choosing Equation (2.15), Equation (2.16) or Equation (2.17) depending on

the underlying distribution. However, if none of the three equations is adequate

for the underlying distribution some estimated quantiles will be biased. Note that

NOBM usually chooses the largest batch size where as spectral analysis usually

operates on the smallest batch size because in this case no independence between

batch statistics is assumed.



Chapter 7

Conclusions and Future Work

In this chapter final conclusions about results of this research work are made and

possible future work is pointed out.

7.1 Conclusions

In the introductory chapters we pointed out that there are many performance mea-

sures based on different characteristics of output processes, as stated in Chapter 2,

which are potentially of interest. The most popular characteristics are expecta-

tions of random values, which are usually easiest to estimate. Currently, sequen-

tial simulation output analysis is basically confined to mean value analysis only.

However, the information gain of mean value analysis is limited, because it can

only provide information about a common or average behaviour of the analysed

system. In contrast to this stands quantile analysis, which can provide informa-

tion about the probability of a certain behaviour. Furthermore, a set of carefully

chosen quantiles can provide an impression of the whole probability distribution

of a given random value.

The main difficulties of quantile estimation in simulation output analysis is

that typical output data from simulation is not identically distributed, due to an

initial transient, and autocorrelated. The initial transient possibly leads to a bias

of point estimates and the correlation potentially leads to a wrong size of interval
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estimates. We demonstrated in Chapter 3 that collecting output data from syn-

chronous independent replications can greatly assist the estimation of quantiles,

because the difficulties of quantile analysis, the initial transient and autocorrela-

tion, can be targeted in a new way. Many difficulties of quantile estimation could

be resolved by applying synchronous independent replications, which are used

in all of the new methods we discussed in Sections 4, 5 and 6. We could show

that the use of replications does not only offer a speedup but different statistical

methods can be applied on the output data. This is the key advantage we used to

introduce new estimation methods.

A method that analyses the time evolution of a set of quantiles is introduced in

Chapter 4. This provides an insight into the dynamics of the simulated model. The

set of quantiles is chosen automatically to produce disjoint confidence intervals

so that high correlation between quantile estimates of one observation index is

avoided. The estimation method is robust and can be used for many kinds of

time dependent behaviour. The degree of correlation of the output process does

not influence the quality of the estimates substantially. The size of the quantile’s

confidence intervals in the probability domain can be calculated directly. The

size of the quantile’s confidence intervals in the domain of the measure of interest

can be calculated during the simulation experiment. Therefore, the error can be

controlled to meet a predefined threshold.

The use of homogeneity tests opens a new class of truncation point detection

methods, as discussed in Chapter 5. This new class of methods is based on the

convergence of the probability distribution towards the steady state distribution.

Therefore, these methods are more powerful than other known methods, which

are based on weaker criteria of convergence, such as convergence of the mean.

These methods can be used on a broader class of output processes and reduce the

bias in subsequent estimators. The homogeneity tests are embedded into different

algorithmic approaches, which are compared by several examples. To obtain a



7.1. CONCLUSIONS 229

sufficiently large random sample for the homogeneity tests not less than 30 repli-

cations should be used. The new truncation point detection methods are tested for

many time dependent processes, including processes which are non-stationary, pe-

riodic, non-monotone, have a transient mean, a transient variance or converge very

slow. We tested the new methods for continuous probability distributions only to

avoid having to adjust homogeneity test statistics for ties in random samples from

discrete probability distributions. Only parameters, which are model independent,

have to be set by the user. All parameters, which require previous knowledge of

the model, are chosen automatically on basis of the simulation output data.

A method that estimates a set of quantiles of the steady state distribution is

introduced in Chapter 6. We showed that the quantile estimates are approximately

unbiased. The experimental coverage of the quantile’s interval estimates is sta-

tistically equal to the expected coverage. This is true for all quantiles, especially

for those in areas of low probability. However, we do not recommend the use of

these methods to estimate extreme quantiles. In this case, rare event simulation

would be more advisable to reduce the run time of the simulation. Again, the set

of quantiles is chosen automatically with disjoint confidence intervals so that high

correlations between quantile estimates is avoided. The method is tested for many

kinds of continuous distributions and various autocorrelation structures. The pa-

rameterisation of the method does not require previous knowledge of the model or

its output data. We demonstrated that the set of quantiles can be used to estimate

the underlying cumulative distribution function.

All of the discussed methods can be used in automated and sequential anal-

ysis. No parameters have to be specified which require previous knowledge of

the model or the output data. Point estimates are always given with a confidence

interval. The size of the confidence interval is reduced until it meets the sequen-

tial stopping criterion. This guarantees valid final estimates with small statistical

error.
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As already pointed out in Chapter 1, we have focused on continuous prob-

ability distributions only. When analysing discrete probability distributions the

ties in random samples have to be considered. This is important for the definition

of quantiles as well as for homogeneity test statistics. However, the extension to

discrete distributions should be straightforward, if laborious. Furthermore, we as-

sumed that lower moments of the analysed probability distribution are finite. This

limitation could be important when analysing heavy tailed distributions.

The examples in the various chapters show that quantile estimation provides

a deep insight into the dynamics of the simulation experiment and the model’s

behaviour. Quantile estimates can be used to analyse evolution over time as well

as to analyse the steady state distribution of arbitrary performance measures.

7.2 Future Work

We already pointed out that implementations of proposed estimation methods

have focused on analysis of continuous distribution functions. However, analy-

sis of discrete measures, such as population or queue length, could be of interest

to the analyst as well. In future work the implementations of proposed estimation

methods could be extended to cover discrete measures by adjusting test statistics

for e.g. homogeneity test. The detection of ties, i.e. identical values, within ob-

served random samples could be used to automatically distinguish between the

continuous and the discrete case. Because of reasons of efficiency such a detec-

tion method has to be based on a carefully chosen algorithmic approach. It might

not be adequate to compare each new collected observation with all previously

collected observations when searching for identical values. The CDF of a dis-

crete measure is usually a step function. This means that the common definition

of quantiles, see Equation (2.12), can lead to multiple quantiles with the same

location. We believe that this will not be a major issue when estimating quan-

tiles, however, the depiction of the CDF based on a linear interpolation between
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quantiles might lead to inappropriate results.

We confined the validation of the proposed estimation methods to well be-

haved random variables. This excludes for example heavy tailed distributions and

distributions with undefined moments. In an extreme case even the mean, the first

moment, could be infinite. Because we have not examined random variables with

these kind of properties we are not able to give a statement about the performance

of the proposed estimation methods used for these examples. In future work de-

tailed properties of not well behaved random variables could be identified which

guarantee statistically valid quantile estimates. On the other hand cases could be

identified where quantile estimation is not possible at all, for example if the value

of a quantile is infinite. We expect that the implementation of estimation methods

has to be extended and maybe even the quantile estimator itself has to be adjusted.

This task includes further research work as well as additional experimental stud-

ies.

In the literature on quantile estimation it is mentioned that the estimation of

extreme quantiles, i.e. for q → 0 and q → 1, is more difficult than the estimation

of e.g. the median, see for example [71-HL84]. This confirms to our experience

in the case of normally distributed random variables. However, we extend this

statement by pointing out that quantile estimation is more difficult in areas where

the probability density is low, i.e. fX(x) → 0. The aim of this research work is

to provide an estimate of the whole distribution function, thus, areas of low prob-

ability density do not receive special treatment. However, the analyst could be

interested especially in information about these areas, for example to estimate the

probability of an unlikely buffer overflow. In future work the proposed estimation

methods could be extended to treat areas of low probability density separately. A

possible extension of the proposed estimation methods is to incorporate them with

rare event simulation. Rare event simulation is a promising technique to imple-

ment this task because in rare event simulation the speed of producing relevant
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observations is increased by focusing on system states with low probability.

In the MRIP scenario, see Section 3.3, analysis of output data is distributed

to replications. In this sense the MRIP scenario uses replications of a simulation

experiment, which includes production and analysis of local observations. This

provides maximum speedup because every computation engine is able to run at its

own speed. Local results of each replication can be combined to a global estimate.

When estimating quantiles it is difficult to derive local estimates, therefore, we

applied synchronous data collection, see Section 3.4, and thus avoid the need for

local estimates. In consequence, all computation engines run only as fast as the

slowest engine. A future task is to investigate possible speedup by integrating our

approach into the MRIP scenario. This could be done by regarding the cluster

of all replications of our simulation experiment as one replication of the MRIP

scenario. By using many clusters, each providing local estimates, a speedup could

possibly be achieved. However, it has to be investigated if global estimates of

many small clusters are of the same statistical quality as estimates provided by

one large cluster, because the number of replications per cluster effects e.g. the

performance of the truncation point detection method of Chapter 5.
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Appendix

A.1 Application of Median Confidence Intervals

In Section 6.2.2 and Section 6.3 we pointed out that usually the estimation of an

appropriate batch size m is the difficulty of batching methods. Here, our purpose

is to estimate the overall batch size m for p independent replications. We would

like to apply median confidence intervals to calculate a critical value for Pearson’s

correlation coefficient. A median confidence interval is a special case of min-max

confidence intervals, see [127-Str04]. Let x1, x2, . . . , xn represent observations

collected during a steady state simulation run of length n. And letX1, X2, . . . , Xn

denote the corresponding random variables, so that Equation (2.5) applies but not

necessarily Equation (2.4). Let Θ̂ be an estimate of an arbitrary parameter Θ

we analyse during this simulation run, with CDF FΘ̂(x). By performing p inde-

pendent replications we receive Θ̂1, Θ̂2, . . . , Θ̂p independent estimates of Θ. Let

Θ̂min = min(Θ̂i|1 ≤ i ≤ p) and Θ̂max = max(Θ̂i|1 ≤ i ≤ p) denote the two ex-

treme values of that sample. As shown in [127-Str04], the min-max confidence in-

terval [Θ̂min, Θ̂max), including Θ̂min but excluding Θ̂max, has the confidence level

Pr
[
Θ̂min ≤ Θ < Θ̂max

]
= 1− (FΘ̂(Θ))p − (1− FΘ̂(Θ))p, (A.1)
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dependent on Θ, which is the characteristic of interest. The difficulty of the min-

max confidence interval is to determine FΘ̂(Θ). If FΘ̂(Θ) = 0.5 the min-max

confidence interval is called the median confidence interval.

Pearson’s correlation coefficient is defined by

Cov [X0, X1]√
Var [X0] Var [X1]

(A.2)

for two arbitrary random variables X0 and X1. Here, let Pearson’s correlation

coefficient be

r̂(p)(P1) =

∑nb−1
i=1 (sj,i(m)− s̄j,0(m))(sj,i+1 − s̄j,1(m))√

(
∑nb−1

i=1 (sj,i(m)− s̄j,0(m))2)(
∑nb−1

i=1 (sj,i+1 − s̄j,1(m))2)
(A.3)

of the original lag-1 paired batch statistics {(sj,i(m); sj,i+1(m))}nb−1
i=1 , where nb is

the number of batches and sj,i(m) is an arbitrary statistic calculated of the subse-

quence xj,(i−1)m+1, xj,(i−1)m+2, . . ., xj,(i−1)m+m and where s̄j,0(m) resp. s̄j,1(m)

is the average of {sj,i(m)}nb−1
i=1 resp. {sj,i+1(m)}nb−1

i=1 . Let P1 denote the original,

i.e. unpermutated, data. And let r̂(p)(Pk) be Pearson’s correlation coefficient for

the lag-1 paired data of the kth permutation of {sj,i(m)}nb

i=1 with 2 ≤ k ≤ (nb!).

Pearson’s correlation coefficient is probably the most common correlation coeffi-

cient, however, other correlation coefficients could be used as well. For example

Spearman’s correlation coefficient could be used to reduce the influence of outliers

because it is based on ranks. We exclusively focus on the lag-1 paired data and

disregard higher lags as it is done in [135-WW43] and [84-LC79]. We establish a

median confidence interval for Θ̂ = r̂(p)(P1) under the assumption of Θ = 0. In

[107-Pit37] the first four moments of Pearson’s correlation coefficient are derived.

Here, the first and the third moment are of special interest: E
[
r̂(p)
]

= 0 holds even

for small samples and Skew
[
r̂(p)
]

= 0 holds approximately. Skew
[
r̂(p)
]
, the 3rd

standardised moment, defines the degree of asymmetry of the distribution of r̂(p).

Therefore, FΘ̂(Θ) = Fr̂(p)(0) = 0.5 is true if nb is large. The null hypothesis of
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our test is that {sj,i(m)}nb

i=1 is an independent sequence.

Pr
[
|r̂(p)(Pk)| < |r̂(p)(P1)|

]
=

1

2
(A.4)

holds under the null hypothesis for a randomly chosen permutation Pk. For K

randomly chosen permutations Pk1 , . . . , PkK
we can derive

Pr
[
∀l(1 ≤ s ≤ K) : |r̂(p)(Pks)| < |r̂(p)(P1)|

]
=

1

2K
. (A.5)

On basis of this equation a confidence interval can be established:

Pr
[
−∆ ≤ r̂(p)(P1) ≤ ∆

]
= 1− 1

2K
(A.6)

with halfwidth

∆ = max
1≤s≤K

(
|r̂(p)(Pks)|

)
. (A.7)

If r̂(p)(P1) is not within the confidence interval, the null hypothesis must be re-

jected at confidence level 1− 1
2K .

The advantage of using this confidence interval is that the assumption of zero

skewness is weaker than the assumption of a normal distribution. For only K = 6

permutations the confidence level is already > 0.95 and K can be regarded as

a constant parameter. Therefore, the time complexity of the confidence interval

calculation is the same as for the calculation of r̂(p)(P1) itself. For our purpose of

estimating the overall batch size m for p independent replications this correlation

test is performed on {sj,i(m)}∞i=1 for any j. Only if all test are positive m can be

regarded as a valid batch size.

A.2 Models of Time Series

In Sections 4.4, 5.6 and 6.4 we apply time series to validate the performance of

proposed estimation methods by comparing simulation results with exact values,

which are derived in this section. Time series analysis, see e.g. [67-Ham94], is

used to understand the underlying theory of a sequence of data. Models of time
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series can have many forms. Two basic classes are the autoregressive (AR) and

the moving average processes (MA). In both classes the white noise process Ψt

is used to introduce randomness into the stochastic model. It consists of random

variables with zero mean E [Ψt] = 0, constant variance Var [Ψt] = σ2
Ψ and is

uncorrelated Cov [Ψt1Ψt2 ] = 0, where t1 6= t2. If Ψt is normally distributed with

FΨt(x) = N (x; 0, σ2
Ψ) it is called Gaussian white noise process.

An autoregressive process AR(p) is given by a weighted sum of p previous

values, a constant value c and a new value taken of the white noise process:

Xt = c+ Ψt +

p∑
i=1

φiXt−i, (A.8)

where φi denotes the ith autoregressive parameter. An moving average process

MA(q) is the weighted sum of q previous values of the white noise process, a

constant value c and a new value taken of the white noise process:

Xt = c+ Ψt +

q∑
i=1

θiΨt−i (A.9)

where θi denotes the ith moving average parameter. Combining these two basic

classes results in a broader class called autoregressive moving average (ARMA)

processes. An ARMA(p, q) process is given by

Xt = c+ Ψt +

q∑
i=1

θiΨt−i +

p∑
i=1

φiXt−i. (A.10)

Conditions for stationarity and general formulas for the expected value, the vari-

ance and the autocorrelation function of the ARMA process are discussed in

[19-BJR94]. Further generalisation are nonlinear ARMA models (NARMA) and

autoregressive integrated moving average models (ARIMA) with its variations

(e.g. seasonal ARIMA, fractional ARIMA).

Here we focus on special ARMA(k, k) processes with identical autoregressive

and moving average parameters, which are defined by the geometrical series 1
2i ,
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which has easily determined properties. Thus, its definition is:

Υ
(k)
t = 1 + Ψt +

k∑
i=1

1

2i
(Υ

(k)
t−i + Ψt−i). (A.11)

The order k is a positive integer and defines how many previous values are used

to calculate a new value of this process. Υ
(k)
t is stationary for every value of k. Ψt

is in this case a Gaussian white noise process with Var [Ψt] = 1. We refer to this

process as geometrical ARMA process.

A.2.1 Steady State Distribution of the First Order Process

In Section 6.4 we will compare quantile estimates with the exact CDF of the first

order geometrical ARMA process, which is derived in this section. The first order

geometrical ARMA process Υ
(1)
t is given by

Υ
(1)
t = 1 + Ψt +

1

2
Υ

(1)
t−1 +

1

2
Ψt−1. (A.12)

Because the process is stationary, its expected value and its variance is constant

for every value of t. The expected value of Υ
(1)
t is

E
[
Υ

(1)
t

]
= 1 + E [Ψt] +

1

2
E
[
Υ

(1)
t−1

]
+

1

2
E [Ψt−1] (A.13)

which leads to

E
[
Υ

(1)
t

]
=

1

1− 1
2

= 2 (A.14)

by substituting E
[
Υ

(1)
t

]
= E

[
Υ

(1)
t−1

]
and E [Ψt] = E [Ψt−1] = 0. The variance of

Υ
(1)
t can be calculated in a similar way:

Var
[
Υ

(1)
t

]
= E

[(
1 + Ψt +

1

2
Υ

(1)
t−1 +

1

2
Ψt−1 − E

[
Υ

(1)
t

])2
]

=
1

4
Var

[
Υ

(1)
t−1

]
+

1

2
Cov

[
Υ

(1)
t−1,Ψt−1

]
(A.15)

The covariance Cov
[
Υ

(1)
t−1,Ψt−1

]
is

Cov
[
Υ

(1)
t−1,Ψt−1

]
= E

[(
Υ

(1)
t − E

[
Υ

(1)
t

])
(Ψt − E [Ψt])

]
= Var [Ψt] = 1

(A.16)
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and because Var
[
Υ

(1)
t

]
= Var

[
Υ

(1)
t−1

]
and Cov

[
Υ

(1)
t ,Ψt

]
= Cov

[
Υ

(1)
t−1,Ψt−1

]
Equation (A.15) evolves to

Var
[
Υ

(1)
t

]
=

2

3
Cov

[
Υ

(1)
t ,Ψt

]
+

5

3
=

7

3
. (A.17)

Adding or multiplying a constant value to a normally distributed random vari-

able or adding two independent normally distributed random variables results in a

normally distributed random variable with different mean and/or variance. From

[94-MF00]:

• c+ N (x;µ, σ2) = N (x;µ+ c, σ2)

• c · N (x;µ, σ2) = N (x;µ, σ2 · c2)

• N (x;µ1, σ
2
1) + N (x;µ2, σ

2
2) = N (x;µ1 + µ2, σ

2
1 + σ2

2)

In Equation (A.11) only constant values are added to or multiplied by the Gaussian

white noise process Ψt. Therefore, the following theorem arises:

Theorem A.2.1 The CDF of Υ
(1)
t is F

Υ
(1)
t

(x) = N
(
x; 2, 7

3

)
.

Proof By repeatedly replacing Υ
(1)
t with its definition, it is possible to find a form

of Υ
(1)
t , which is based on a pattern described by two infinite series.

Υ
(1)
t = 1 + Ψt +

1

2
Ψt−1 +

1

2
Υ

(1)
t−1

=
1

1
+

1

2
+

1

4
+

1

8
+ · · ·

+Ψt +
1

1
Ψt−1 +

1

2
Ψt−2 +

1

4
Ψt−3 + · · ·

=
∞∑

j=0

(
1

2j

)
+ Ψt +

∞∑
j=0

(
1

2j
Ψt−j

)
(A.18)

The probability distribution function of Ψt is FΨt (x) = N (x; 0, 1). By using this
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result, the probability distribution function of Υ
(1)
t can be determined.

F
Υ

(1)
t

(x) =
∞∑

j=0

(
1

2j

)
+ N (x; 0, 1) +

∞∑
j=0

(
1

2j
N (x; 0, 1)

)

= N

(
x;

∞∑
j=0

(
1

2j

)
, 1 +

∞∑
j=0

(
1

4j

))

= N

(
x;

1

1− 1
2

, 1 +
1

1− 1
4

)
= N

(
x; 2,

7

3

)
(A.19)

We have proved that F
Υ

(1)
t

(x) = N
(
x; 2, 7

3

)
is the expected steady state dis-

tribution of the first order geometrical ARMA process. This result can be used to

verify estimations of F
Υ

(1)
t

(x).

A.2.2 Steady State Distribution of the Second Order Process

In Section 6.4 we will compare quantile estimates with the exact CDF of the sec-

ond order geometrical ARMA process, which is derived in this section. The sec-

ond order geometrical ARMA process Υ
(2)
t is defined by

Υ
(2)
t = 1 + Ψt +

1

2
Υ

(2)
t−1 +

1

4
Υ

(2)
t−2 +

1

2
Ψt−1 +

1

4
Ψt−2. (A.20)

As for the first order process, the expected value of Υ
(2)
t can be determined by

E
[
Υ

(2)
t

]
= 1 +

1

2
E
[
Υ

(2)
t−1

]
+

1

4
E
[
Υ

(2)
t−2

]
=

1

1− 1
2
− 1

4

= 4. (A.21)

The calculation of the variance is more difficult in the second order case than in

the first order case.

Var
[
Υ

(2)
t

]
= E

[(
Υ

(2)
t − E

[
Υ

(2)
t

])2
]

(A.22)

= 9− 9

2
E
[
Υ

(2)
t

]
+

9

16
E
[
Υ

(2)
t

]2
+

5

16
Var

[
Υ

(2)
t

]
+

21

16
Var [Ψt]

+
1

4
Cov

[
Υ

(2)
t ,Υ

(2)
t−1

]
+

5

8
Cov

[
Υ

(2)
t ,Ψt

]
+

1

4
Cov

[
Υ

(2)
t ,Ψt−1

]
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This result shows, that more knowledge about the covariance of the process is

needed. The unknown parts of this equation are

Cov
[
Υ

(2)
t ,Ψt

]
= E

[(
Υ

(2)
t − E

[
Υ

(2)
t

])
(Ψt − E [Ψt])

]
= Var [Ψt] = 1; (A.23)

Cov
[
Υ

(2)
t ,Ψt−1

]
= E

[(
Υ

(2)
t − E

[
Υ

(2)
t

])
(Ψt−1 − E [Ψt−1])

]
=

1

2
Cov

[
Υ

(2)
t ,Ψt

]
+

1

2
Var [Ψt] = 1; (A.24)

Cov
[
Υ

(2)
t ,Υ

(2)
t−1

]
= E

[(
Υ

(2)
t − E

[
Υ

(2)
t

])(
Υ

(2)
t−1 − E

[
Υ

(2)
t−1

])]
=

1

2
Var

[
Υ

(2)
t

]
+

1

4
Cov

[
Υ

(2)
t ,Υ

(2)
t−1

]
+

3

4

=
2

3
Var

[
Υ

(2)
t

]
+ 1. (A.25)

Further more, E
[
Υ

(2)
t

]2
= 16 and Var [Ψt] = 1. With the help of this results the

variance can now be calculated:

Var
[
Υ

(2)
t

]
=

39

16
− 23

48
Var

[
Υ

(2)
t

]
=

117

25
. (A.26)

Because Ψt is a Gaussian white noise process, again, we can show that Υ
(2)
t is

normally distributed.

Theorem A.2.2 The CDF of Υ
(2)
t is F

Υ
(2)
t

(x) = N
(
x; 4, 117

25

)
.

Proof Υ
(2)
t can be denoted on basis of infinite series.

Υ
(2)
t = 1 + Ψt +

1

2
Ψt−1 +

1

4
Ψt−2 +

1

2
Υ

(2)
t−1 +

1

4
Υ

(2)
t−2

=
1

1
+

1

2
+

2

4
+

3

8
+

5

16
+

8

32
+

13

64
+ · · ·

+Ψt +
1

1
Ψt−1 +

2

2
Ψt−2 +

3

4
Ψt−3 +

5

8
Ψt−4 +

8

16
Ψt−5 +

13

32
Ψt−6 + · · ·

= 2
∞∑
i=0

(
Fibi

2i

)
+ Ψt +

∞∑
i=0

(
Fibi+2

2i
Ψt−i−1

)
(A.27)
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The probability distribution function of Υ
(2)
t is, therefore, given by

F
Υ

(2)
t

(x) = 2
∞∑
i=0

(
Fibi

2i

)
+ N (x; 0, 1) +

∞∑
i=0

(
Fibi+2

2i
N (x; 0, 1)

)

= N

(
x; 2

∞∑
i=0

(
Fibi

2i

)
, 1 +

∞∑
i=0

(
Fibi+2

2i

)2
)

(A.28)

This equation contains two geometrical series with Fibonacci numbers in the nu-

merator. The Fibonacci numbers are defined by Fibi = Fibi−1 + Fibi−2, where

Fib0 = 0 and Fib1 = 1. Binet’s formula, see e.g [134-Vor02], is a closed form of

the Fibonacci numbers:

Fibi =
1√
5

(1 +
√

5

2

)i

−

(
1−
√

5

2

)i
 . (A.29)

And therefore

Fibi+2 =
1√
5

(1 +
√

5

2

)i+2

−

(
1−
√

5

2

)i+2


=
3 +
√

5

2
√

5

(
1 +
√

5

2

)i

− 3−
√

5

2
√

5

(
1−
√

5

2

)i

. (A.30)

By substituting Fibi and Fibi+2 by the closed formula the two infinite series of
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Equation (A.28) can be calculated.

∞∑
i=0

(
Fibi

2i

)
=

1√
5

∞∑
i=0

(
1 +
√

5

4

)i

− 1√
5

∞∑
i=0

(
1−
√

5

4

)i

=
1√
5
· 1

1− 1+
√

5
4

− 1√
5
· 1

1− 1−
√

5
4

= 2 (A.31)
∞∑
i=0

(
Fibi+2

2i

)2

=
7 + 3

√
5

10

∞∑
i=0

(
3 +
√

5

8

)i

+
7− 3

√
5

10

∞∑
i=0

(
3−
√

5

8

)i

−2

5

∞∑
i=0

(
−1

4

)i

=
7 + 3

√
5

10
· 8

5−
√

5
+

7− 3
√

5

10
· 8

5 +
√

5
− 8

25

=
92

25
(A.32)

And finally, the probability distribution function of Υ
(2)
t is

F
Υ

(2)
t

(x) = N

(
x; 2 · 2, 1 +

92

25

)
= N

(
x; 4,

117

25

)
(A.33)

We have proved that F
Υ

(2)
t

(x) = N
(
x; 4, 117

25

)
is the expected steady state

distribution of the second order geometrical ARMA process. This result can be

used to verify estimations of F
Υ

(2)
t

(x).

A.3 M/M/1 Queue

The M/M/1 queue is probably the most commonly used single server example of

queueing systems. We follow Kendall’s notation. Interarrival and service times

are exponentially distributed, where λ denotes the mean arrival rate and µ denotes

the mean service rate. The traffic intensity is ρ = λ
µ

. If ρ < 1 the queue is stable



A.3. M/M/1 QUEUE 243

Listing A.1: Pseudocode for the calculation of pi,n.
0 f l o a t λ ;

f l o a t µ ;
i n t k ;
i n t nmax ;
/ / ∗∗∗∗∗ λ , µ , k and nmax are u s e r i n p u t . ∗∗∗∗∗

5
f l o a t ρ := λ/µ ;
f l o a t a := ρ/(ρ + 1) ;
f l o a t b := 1− a ;

10 i f (k ≤ 0 ) k := 1 ;
f o r ( i n t n := 1 ; n ≤ nmax ; + + n )

f o r ( i n t i := nmax ; i ≥ 1 ;−− i ){
i f (n ≤ k ){

i f ( i = n ) pi,n := 1 ; / / r u l e ( 1 )
15 e l s e pi,n := 0 ;

} e l s e {
i f ( i > n ) pi,n := 0 ;
i f ( i = n ) pi,n := an−k ; / / r u l e ( 2 )
i f ( ( i < n ) ∧ ( i 6= 1 ) ) pi,n := a · pi−1,n−1 + b · pi+1,n ; / / r u l e ( 3 )

20 i f ( i = 1 ) pi,n := b/a · pi+1,n ; / / r u l e ( 4 )
}

}

and steady state measures can be calculated. The mean number of jobs in system

is ρ
1−ρ

. The mean response time (waiting + service time) is E [R∞] = 1
µ(1−ρ)

. The

CDF of the response time in steady state is FR∞(x) = 1−e−x/E[R∞]. These steady

state properties are well known, see for example in [75-Jai91].

In [79-KL85] the transient behaviour of the M/M/1 queue is discussed. An

numerical approach is described that calculates Pk(n
′, i), the probability of i cus-

tomers present in the system at the arrival of the n′th (non initial) customer with

k customers already present at time 0, relying on the fact that underlying random

variables behave like a Markov chain. We are also interested in performance mea-

sures regarding the initial customers and the system’s response time. Thus, we

use a slightly modified numerical approach, which is described in Listing A.1.

The user has to set all the parameters up to Line 4. Then, a = Pr [A < S] =

ρ
ρ+1

and b = Pr [S < A] = 1 − a can be calculated, where A and S represent
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interarrival and service times. The output will be given in a matrix of pi,n, where

1 ≤ n ≤ nmax and 1 ≤ i ≤ nmax. Note that n includes both, initial and regu-

lar customers. pi,n is the probability that customer n (initial or not) waited for i

customers to finish service, including himself, at the end of his own service. In

Line 10 the value of k is adjusted for the case that no customers are present at

t = 0, i.e. k ≤ 0. The first of all customers, initial or not, never has to wait for

other customers. Thus, the cases k = 0 and k = 1 do not have to be processed

differently. The actual arrival time of the first customer does not influence the cal-

culation of pi,n. The outer loop in Line 11 increases n. The inner loop in Line 12

decreases i. This order is efficient for the calculation of pi,n. The statement in

Line 13 separates the initial and the non initial customers. For the initial cus-

tomers pi,n is one or zero. This is because no initial customer can finish its service

before all initial customers are present. Line 17 to Line 20 describe pi,n for non

initial customers. Line 18 covers the case where no customer has left the system

and here pn,n = an−k. The general case is given in Line 19. Here, pi,n depends

on pi−1,n−1 and pi+1,n. In Line 20 the case of an empty system is regarded and

pi,n depends only on pi+1,n. More details and further explanations of the rules can

be found in [79-KL85]. Note that the complexity of Listing A.1 is much reduced

compared with the algorithm in [79-KL85] and it covers both, k = 0 and k > 0.

This is achieved by avoiding special cases by a simpler algorithmic approach.

In Figure A.1 we can see an example of the matrix of all pi,n, where λ = 0.5,

µ = 1, k = 2 and nmax = 6 so that a = 0.3̄ and b = 0.6̄. In the table n is given on

the horizontal scale and i is given on the vertical scale. Rounded values of pi,n are

given in the top left corner of each entry of the table. In the bottom right corner

the applied rule is given, as stated in lines 14, 18, 19 and 20 in Listing A.1. For

n = 6 and i = 3 the arrows are an example of how Line 19 is calculated. And for

n = 3 and i = 1 the arrow is an example of how Line 20 is calculated.

If all pi,n are known the CDF of the system’s response time Rn for the nth
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0 0 0 0 0

0 0 0 0 0.037037

0.012346

0.032922

0 0 0 0.111111 0.074074 0.065844

0 0 0.333333 0.148148 0.131687 0.128029

0 1 0.222222 0.246914 0.252401 0.253620

0.5072400.5048010.4938270.4444441 0

a

a

a

a

2

3

4

b

a

i=1

i

a
b

(3)(3)

(3) (3)

(3)

(2)

(2)

(2)

(2)

(1)

(1)

(3) (3) (3) (3)

(3)
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n=k
n

n=1

Figure A.1: pi,n calculated by Listing A.1, where λ = 0.5, µ = 1, k = 2 and
nmax = 6 so that a = 0.3̄ and b = 0.6̄.

customer leaving the system can be calculated. Every customer receives an ex-

ponentially distributed service time. Thus, the response time distribution can be

found by summing i exponential random variables:

FRn(x) =
n∑

i=1

(
pi,n

i∑
1

Exp (x;µ)

)
=

n∑
i=1

(pi,nErlang (x;µ, i)) . (A.34)

Again, n includes initial and regular customers. The inner sum of exponential

distributions adds up the service times of the i customers in the queue. This overall

waiting time is Erlang distributed and has to be weighted by the probability of i

customers in the queue. The outer sum adds up all weighted waiting times. This

formula can be calculated for any x and it can be used to validate estimates of

FRn(x).
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Listing A.2: Pseudocode for approximation of FR∞(x) in an M/E2/1 queue.
0 long double ME21 r e s p o n s e ( long double X , long double λ , long double µ ) c o n s t {

/ / Note : mean s e r v i c e t i m e i s 2 /µ
i f ((X < 0) ∨ (λ ≤ 0) ∨ (µ ≤ 0)) throw e r r o r ( ” I n v a l i d P a r a m e t e r . ” ) ;
long double ρ := 2∗λ / µ ;
i f (ρ ≥ 1) throw e r r o r ( ” U n s t a b l e Model . ” ) ;

5
long double p a r t 1 := cosh ( ( X∗ s q r t (λ∗ (4∗µ+λ ) ) ) / 2 ) ∗ exp (((−2∗µ+λ )∗X ) / 2 ) ;
long double p a r t 2 :=(−2∗µ+λ )∗ s i n h ( ( X∗ s q r t (λ∗ (4∗µ+λ ) ) ) / 2 ) ∗ exp (((−2∗µ+λ )∗X ) / 2 ) ;
long double p a r t 3 := s q r t (λ∗ (4∗µ+λ ) ) ;

10 re turn 1−p a r t 1 +( p a r t 2 / p a r t 3 ) ;
}

A.4 M/E2/1 Queue

In many practical situations an exponential assumption of the service time may be

rather limiting. The M/Ek/1 queue has an Erlang type k distribution. For k →∞

the service time’s distribution is deterministic and for k = 1 it is exponential.

Using k = 2 the coefficient of variation of the service time is 1√
2
, the mean inter-

arrival time is 1
λ

. The service time is 2
µ

because every customer has a single service

consisting of the sum of two independent and identically distributed exponential

random variables.

To calculate the CDF FR∞(x) of the steady state response time the general

approach for the M/G/1 queue can be applied, for details see e.g. [66-GH98]. In

the general case the relationship between the Laplace-Stieltjes transform of the

service and response times, G(s) and W (s), is given by Pollaczek-Khintchine

transform equation

W (s) =
(1− ρ)sG(s)

s− λ(1−G(s))
. (A.35)

In the case of the M/E2/1 queue the Laplace-Stieltjes transform of the service time

distribution is

G(s) =

(
µ

µ+ s

)2

. (A.36)

Then, the Pollaczek-Khintchine transform for the response time simplifies to

W (s) =
(µ− 2λ)µ

s(µ2 + 2µs+ s2 − 2λµ− λs)
. (A.37)
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Listing A.3: Pseudocode for approximation of F−1
R∞

(y) in an M/E2/1 queue.
0 long double inv ME21 r e s p o n s e ( long double y , long double λ , long double µ ) c o n s t {

i f ((0 > y) ∨ (1 ≤ y) ∨ (λ ≤ 0) ∨ (µ ≤ 0)) throw e r r o r ( ” I n v a l i d P a r a m e t e r . ” ) ;
long double ρ := 2∗λ / µ ;
i f (ρ ≥ 1) throw e r r o r ( ” U n s t a b l e Model . ” ) ;

5 i f (y = 0) re turn 0 ; / / s p e c i a l case
c o n s t long double a l l o w e d d i f f e r e n c e : = 0 . 0 0 0 0 0 0 0 0 0 1 ;

/ / l ower bound
long double l : = 0 ;

10 long double Fl : = 0 ;

/ / upper bound
long double u : = 1 ;
long double Fu :=ME21 r e s p o n s e ( u , λ ,µ ) ;

15 whi le (Fu ≤ y ) {u := u ∗2 ; Fu :=ME21 r e s p o n s e ( u , λ ,µ ) ; } / / f i n d u w i t h FR∞ (u) > y

/ / b i n a r y s e a r c h based on ME21 r e s p o n s e
long double c := l +( u−l ) / 2 ; / / c e n t r e o f l and u
long double Fc :=ME21 r e s p o n s e ( c , λ ,µ ) ;

20 whi le ( u−l>a l l o w e d d i f f e r e n c e ){
i f (Fc > y ) {u := c ; Fu :=Fc ;}
e l s e { l := c ; Fl :=Fc ;}
c := l +( u−l ) / 2 ; Fc :=ME21 r e s p o n s e ( c , λ ,µ ) ;

}
25 re turn c ;

}

By inverting the Laplace-Stieltjes transform using Maple we obtain

FR∞(x) = 1− cosh
(
x
a

2

)
exb +

λ− 2µ

a
sinh

(
x
a

2

)
exb, (A.38)

where a =
√
λ(4µ+ λ) and b = (λ−2µ)

2
. For calculations we used the software

tool Maple and for further explanations see e.g. [66-GH98]. To compare sim-

ulation results with the expected distribution a method is needed that calculates

Equation (A.38). Pseudocode of an implementation of this method is given in

Listing A.2.

To calculate coverage of interval estimates of quantiles the inverse distribution

F−1
R∞

(y) is needed. It could be calculated by inverting Equation (A.38). However,

this leads to a complex formula which is difficult to implement. We found that

a binary search is practical. Let FR∞(l) ≤ FR∞(x) ≤ FR∞(u), where l and u

are upper and lower bounds and x = F−1
R∞

(y) is the value of interest. l and u are

increased and decreased until their distance is smaller than a predefined threshold.
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Then, l+(u− l)/2 ≈ x can be assumed. Pseudocode of this binary search is given

in Listing A.3. For our purpose of coverage analysis the run time of this method

is acceptable.

The transient behaviour of the M/Ek/1 queue can be calculated with a similar

approach to Listing A.1. Here, a matrix of the size pi,n has to be extended to

1 ≤ i ≤ knmax and 1 ≤ n ≤ nmax to incorporate the k exponential services of

the Erlang distribution. Details of the calculation of pi,n are given in [78-Kel85]

and [92-McN91]. The calculation of FRn(x) can be done by the extension of

Equation (A.34) to allow for the new size of the matrix pi,n.

A.5 M/H2/1 Queue

The service time of an M/Hk/1 queue is governed by a hyperexponential distribu-

tion of dimension k. We focus on k = 2 and a mean interarrival time of λ = 1.

Let p denote the probability of choosing a service rate µ1 and 1−p the probability

of choosing a service rate µ2 of exponential distributions. Then, the overall mean

service time m is given by

m =
p

µ1

+
1− p
µ2

(A.39)

and the variance is

σ2 = 2

(
p

µ2
1

+
1− p
µ2

2

)
−
(
p

µ1

+
1− p
µ2

)2

. (A.40)

To fully specify the parameters p, µ1 and µ2 three conditions are needed. For

the first condition we set the wanted value ofm. The second condition is a squared

m p µ1 µ2

0.5 0.2113248654 0.8452994616 3.154700538
0.75 0.2113248654 0.5635329745 2.103133692
0.9 0.2113248654 0.4696108120 1.752611410

Table A.1: Parameters of the M/H2/1 queue.
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Listing A.4: Pseudocode for approximation of FR∞(x) in an M/H2/1 queue.
0 long double MH21 r e s p o n s e ( long double X , long double λ , long double µ1 ,

long double µ2 , long double p ) c o n s t {
i f ((0 > X) ∨ (λ ≤ 0) ∨ (µ1 ≤ 0) ∨ (µ2 ≤ 0) ∨ (0 > p) ∨ (p > 1))

throw e r r o r ( ” I n v a l i d P a r a m e t e r . ” ) ;

5 long double q := 1−p ;
long double mean := ( p / µ1 ) + ( q / µ2 ) ;
long double v a r := (2∗ p ) / µ2

1+(2∗(1−p ) ) / µ2
2−((p / µ1 ) + ( q / µ2 ) ) 2 ;

long double ρ := λ ∗ mean ;
10 i f (ρ ≥ 1) throw e r r o r ( ” U n s t a b l e Model . ” ) ;

long double p a r t 1 := s q r t (µ2
1 +(2∗λ∗µ1 )−(2∗µ1∗µ2 )+λ2−(2∗λ∗µ2 )+µ2

2
+(4∗λ∗p∗µ2 )−(4∗λ∗µ1∗p ) ) ;

long double p a r t 2 := exp ( ( ( λ−µ1−µ2 )∗X ) / 2 ) ;
15 long double p a r t 3 := cosh (X∗ p a r t 1 / 2 ) ;

long double p a r t 4 := s i n h (X∗ p a r t 1 / 2 ) ;
long double p a r t 5 := ((−2∗λ∗p∗µ2

2 )−(µ2
1∗µ2 )−(µ2∗λ∗µ1 ) + (µ1∗µ2

2 )
−(4∗p2∗µ2∗λ∗µ1 )+ (4∗µ2∗λ∗µ1∗p )
−(2∗p∗µ2

2∗µ1 )+ (2∗ p2∗µ2
2∗λ )+ (2∗µ2

1∗p∗µ2 )−(2∗µ2
1∗p∗λ )

20 +(2∗µ2
1∗p2∗λ ) ) / ( p a r t 1 ∗µ1∗µ2 ) ;

re turn 1−p a r t 2 ∗ p a r t 3 + p a r t 4 ∗ p a r t 2 ∗ p a r t 5 ;
}

coefficient of variance being 2. This is given by setting σ2 = 2m2. A standard

assumption for the third condition is that of balanced means, which is given if
p
µ1

= 1−p
µ2

. For m = {0.5, 0.75, 0.9} we receive the settings which are shown in

Table A.1. They are computed by the software tool Maple.

As in the example of the M/E2/1 queue, we calculate the CDF FR∞(x) of

the steady state response time with the software tool Maple. Here, the Laplace-

Stieltjes transform of the service time distribution is

G(s) =
pµ1

µ1 + s
+

(1− p)µ2

µ2 + s
. (A.41)

Thus, the Pollaczek-Khintchine transform is

W (s) =

(
1− λ

(
p
µ1

+ 1−p
µ2

))(
pµ1

µ1+s
+ (1−p)µ2

µ2+s

)
s− λ

(
1− pµ1

µ1+s
− (1−p)µ2

µ2+s

) . (A.42)

By inverting the Laplace-Stieltjes transform we obtain

FR∞(x) = 1− cosh
(
x
a

2

)
exc +

b

aµ1µ2

sinh
(
x
a

2

)
exc, (A.43)
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Listing A.5: Pseudocode for approximation of F−1
R∞

(y) in an M/H2/1 queue.
0 long double inv MH21 r e s p o n s e ( long double y , long double λ , long double µ1 ,

long double µ2 , long double p ) c o n s t {
i f ((0 > y) ∨ (1 ≤ y) ∨ (λ ≤ 0) ∨ (µ1 ≤ 0) ∨ (µ2 ≤ 0) ∨ (0 > p) ∨ (p > 1))

throw e r r o r ( ” I n v a l i d P a r a m e t e r . ” ) ;

5 long double q := 1−p ;
long double mean := ( p / µ1 ) + ( q / µ2 ) ;
long double v a r := (2∗ p ) / µ2

1+(2∗(1−p ) ) / µ2
2−((p / µ1 ) + ( q / µ2 ) ) 2 ;

long double ρ := λ ∗ mean ;
10 i f (ρ ≥ 1) throw e r r o r ( ” U n s t a b l e Model . ” ) ;

i f (y = 0) re turn 0 ; / / s p e c i a l case
c o n s t long double a l l o w e d d i f f e r e n c e : = 0 . 0 0 0 0 0 0 0 0 0 1 ;

15 / / l ower bound
long double l : = 0 ;
long double Fl : = 0 ;

/ / upper bound
20 long double u : = 1 ;

long double Fu :=MH21 r e s p o n s e ( u , λ ,µ1 ,µ2 , p ) ;
whi le (Fu ≤ y ) {u := u ∗2 ; Fu :=MH21 r e s p o n s e ( u , λ ,µ1 ,µ2 , p ) ; } / / f i n d u w i t h FR∞ (u) > y

/ / b i n a r y s e a r c h based on MH21 r e s p o n s e .
25 long double c := l +( u−l ) / 2 ; / / c e n t r e o f l and u

long double Fc :=MH21 r e s p o n s e ( c , λ ,µ1 ,µ2 , p ) ;
whi le ( u−l>a l l o w e d d i f f e r e n c e ){

i f (Fc > y ) {u := c ; Fu :=Fc ;}
e l s e { l := c ; Fl :=Fc ;}

30 c := l +( u−l ) / 2 ; Fc :=MH21 r e s p o n s e ( c , λ ,µ1 ,µ2 , p ) ;
}
re turn c ;

}

where

a =
√
µ2

1 + 2λµ1 − 2µ1µ2 + λ2 − 2λµ2 + µ2
2 + 4λpµ2 − 4λµ1p,

b = −2λpµ2
2 − µ2

1µ2 − µ2λµ1 + µ1µ
2
2 − 4p2µ2λµ1 + 4µ2λµ1p

−2pµ2
2µ1 + 2p2µ2

2λ+ 2µ2
1pµ2 − 2µ2

1pλ+ 2µ2
1p

2λ and

c =
λ− µ1 − µ2

2
. (A.44)

For further explanations see e.g. [66-GH98]. Pseudocode of an implementation of

the calculation of FR∞(x) for any x is given in Listing A.4. This implementation

is based on Equation (A.43).

For coverage analysis of the interval estimate of quantiles a method is needed
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that calculates F−1
R∞

(y) for any given y. As in the example of the M/E2/1 queue

we use a binary search based on the calculation of FR∞(x). Pseudocode of this

method is given in Listing A.5.

A.6 Empirical Analysis of the Power of the Tests in
Section 5.3

In Section 5.3 we discussed homogeneity tests and their application in truncation

point detection methods of Chapter 5. The Anderson-Darling test was discussed

and tested to give good performance for our purpose. Here, we would like to

estimate the power of our application of the Anderson-Darling test and its use in

a multiple comparisons approach.

The null hypothesis H0 of all our Anderson-Darling 2-sample tests is that

the two random samples of X1 and X2 are identically distributed. The associated

alternative hypothesis is that the two random samples ofX1 andX2 are differently

distributed. There are four different situations when performing a homogeneity

test, where α is the significance level and 1− β is the power of the test.

H0 is true but rejected: This is a Type I error, its probability is α.

H0 is true and not rejected: This is a correct result, its probability is 1− α.

H0 is false and rejected: This is a correct result, its probability is 1− β.

H0 is false but not rejected: This is a Type II error, its probability is β.

The Anderson-Darling test, which is described in Section 5.3.2 is nonparamet-

ric. Here, we are interested in its performance when it is applied to common situ-

ations. Therefore, we determine α and β of our implementation of the Anderson-

Darling 2-sample test empirically. For this purpose a series of experiments was

done with random samples from uniform, normal and exponential distributions.

The experiments are done for different sample size p = {30, 100, 200}. These
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settings are selected because p = 30 is recommended to be the minimum number

of replications when applying the methods of Chapter 5 and p selected between

100 and 200 is a good setting, see Section 5.5.2. For every setting 105 indepen-

dent homogeneity tests are done. In Table A.2 empirical values of α are reported,

which are determined by counting the number of rejections of a true H0 in 105 in-

dependent Anderson-Darling 2-sample tests. All reported values are smaller than

the chosen significance level α = 0.05, thus, the probability of a Type I error is

small and our implementation returns valid results if H0 is true.

In a second series of experiments we determine the power of our implementa-

tion of the Anderson-Darling 2-sample test empirically. Again, U (x; 0, 1), N (x; 0, 1)

and Exp (x; 1) are used. To force H0 to be false, the distribution of the sec-

ond random sample in each Anderson-Darling 2-sample test is displaced by ∆ =

E [X2]−E [X1]. The values of ∆ are increased, starting with ∆ close to 0. Results

are depicted in Figure A.2. Empirical values of the power 1−β are determined by

counting rejections of a false H0 in 103 independent Anderson-Darling 2-sample

tests for every ∆ separately. The values of the empirical power are rising from a

low level close to 0 towards 1. This demonstrates that the probability of a Type II

error is shrinking with growing displacement in distribution, as we would expect.

So far we assessed the performance of a single Anderson-Darling 2-sample

test. However, the algorithms of Chapter 5 involve multiple comparisons as well.

The probability of not rejecting a true H0 in one test is 1 − α. So, the proba-

bility of not rejecting a true H0 in k independent tests is (1 − α)k. Thus, the

p = 30 p = 100 p = 200
U (x; 0, 1) 0.0077 0.00682 0.00672
N (x; 0, 1) 0.01559 0.01339 0.01301
Exp (x; 1) 0.02374 0.02028 0.01934

Table A.2: Empirical values of α determined by counting rejections of a true H0

in 105 independent Anderson-Darling 2-sample tests.
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Figure A.2: Empirical values of the power 1−β determined by counting rejections
of a false H0 in 103 independent Anderson-Darling 2-sample tests.

probability of rejecting a true H0 in k independent tests is αm = 1 − (1 − α)k.

αm can be regarded as the experiment-wide significance level. These calcula-

tions assume independent homogeneity tests and, therefore, this result is likely

to be a lower bound for our application. To assess αm empirically for the mul-

tiple Anderson-Darling 2-sample tests we perform the algorithm of Listing 5.1.

For every step of the algorithm we depicted the percentage of rejections of H0

over time in Figure A.3. Note, that for this purpose all i · r Anderson-Darling

2-sample tests are performed in the ith step of the algorithm, unlike Line 16 of

Listing 5.1. Each cross in Figure A.3 shows the rejections of H0 based on just

one simulation experiment, so they are not averaged results. To assess αm em-

pirically we have to make sure that H0 is true, which means that the analysed

process is in steady state. Thus, we are looking for the first observation index

with no rejections of H0 and assume that this is the beginning of the steady state.
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Figure A.3: Percentage of rejections of H0 for each step of the algorithm of List-
ing 5.1.
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In the case of the quadratic displacement, see Equation (5.32) and Figure A.3(a),

the first observation index with no rejections is at 87 in this simulation run. Until

observation index 200 there are another 57 observation indexes where H0 is not

rejected by any of the Anderson-Darling 2-sample tests. So, we can derive that in

this example the empirical αm is 1 − (57/(200 − 87)) ≈ 0.5. In the case of the

ARMA(5, 5) process, see Equation (5.33) and Figure A.3(b), the first observation

index with no rejections of H0 is at 174. Until observation index 400 there are

another 165 observation indexes whereH0 is not rejected by any of the Anderson-

Darling 2-sample tests. So, we can derive that in this example the empirical αm

is 1− (165/(400− 174)) ≈ 0.27. In our last example we use a bounded random

walk, see Equation (4.14) and Figure A.3(c). Because of high computational ef-

fort we depict only observation indexes every 100 steps and include those in our

analysis. The first observation index with no rejections of H0 is at 6800. Until

observation index 16000 there are another 11 observation indexes (with step size

100!) where H0 is not rejected by any of the Anderson-Darling 2-sample tests.

In this example the empirical αm is 1 − (11/(160 − 68)) ≈ 0.88. As we can

see, the empirical value of αm depends mainly on three factors, (a) the number of

Anderson-Darling 2-sample tests given by i · r, (b) the autocorrelation structure

of the underlying process and (c) the fact that one random sample is used in all

of the Anderson-Darling 2-sample tests. The factors (b) and (c) introduce high

correlation into the results of the Anderson-Darling 2-sample tests of one step of

the algorithm.

The empirical values of αm are quite large. In consequence the probability of

a Type I error, rejecting a true H0, is large. However, this may well be acceptable

when trying to find a truncation point. In practise it is not a problem ifH0 is falsely

rejected for a number of possible truncation points, because we need to find only

one valid candidate and usually it is better to be deeper in steady state. Therefore,

we use the criterion that none of the Anderson-Darling 2-sample tests should reject
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H0 to indicate that steady state is reached. This is the most conservative approach

and it avoids the need for defining αm.

This most conservative approach leads to good results in all our examples of

Section 5.6 and might be a good choice for many other simulation models. Even in

the example of the bounded random walk, where truncation points are extremely

large, it showed convincing results. Note, that in this example at observation index

i = 6800 and r = 10 a number of 68000 Anderson-Darling 2-sample tests did not

reject H0. This shows again, that the performed tests at one step of the algorithm

are extremely dependent on each other. This is the reason why the more advanced

algorithms in Listing 5.2 and Listing 5.3 avoid doing i · r homogeneity tests in

the ith step of the algorithm. These algorithms perform a constant number of just

r+1 (resp. r) Anderson-Darling 2-sample tests in each step leading to better time

complexity and storage requirements. The remaining Anderson-Darling 2-sample

tests are done with random samples of carefully selected observation indexes.

A serious problem arises, if the empirical value of αm tends to 1. In this situ-

ation a true H0 would always be rejected and the algorithm would not be able to

detect steady state. A behaviour like this was not detected in any of the experi-

ments performed for this research work. However, in Figure A.3(c) we saw that

the number of rejections is rising again after observation index 6800, the smallest

index without rejections, was reached. This indicates that, for an unnecessarily

large r, the problem of the empirical αm tending to 1 could arise. In this situation

the graph of the percentage of rejections drawn over the observation indexes will

still have a minimum. We recommend choosing the truncation point at this min-

imum, the observation index where the least rejections are done. Regarding the

experiments for this research work a situation like this seems to be improbable.

But still, it is possible for the algorithm of Listing 5.1, because the number of ho-

mogeneity tests is given by i ·r and, therefore, increasing in each step. A situation

where αm tends to 1 is practically impossible for the algorithms of Listing 5.2 and
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Listing 5.3, because in these cases the number of homogeneity tests is constant

for every step. However, to guarantee that the algorithms stop in any case an alter-

native stopping criterion is introduced that simply stops the tests if the simulation

horizon is larger than one would expect (see Listing 5.1 in Line 11, Listing 5.2 in

Line 13 and Listing 5.3 in Line 13).

Assessing αm implies that H0 is true and it can be done only in steady state.

The counterpart 1 − βm, the experiment-wide power, implies a false H0 and it

can be assessed during the transient phase. In Figure A.2 we saw that the power

1 − β is dependent on the displacement of the distribution. We have to take this

into account when determining 1 − βm empirically. As examples we chose a

quadratic displacement (see Equation (5.32)) and an ARMA(5, 5) process (see

Equation (5.33)), both governed by a transient mean value. The results are de-

picted in Figure A.4. The series of experiments consists of 103 repetitions for

each example, 100 independent replications were used in each repetition. Em-

pirical values of the power 1 − β are determined by counting rejections during

the transient phase for every observation index i separately. The results are de-

picted in Figure A.4 against E [X∞]−E [Xi], the difference between the expected

value in steady state and the expected value at observation index i. The distance

E [X∞] − E [Xi] is given on the abscissa with increasing values, even though

E [X∞] − E [Xi] is decreasing with growing i in these examples. We can see

that the empirical power of 1 − βm is tending to 1 for an increasing distance.

For small distances it does not tend to 0. This indicates that a Type II error, the

error of not rejecting a false H0, cannot be excluded if the distance gets small.

This is the reason why, for example, in the case of a quadratic displacement (see

Equation (5.32)) the estimated truncation points tend to be smaller than 100, see

Table 5.6 and Figure 5.20, when applying the algorithm of Listing 5.1. This is due

to the convergence to the truncation point from below. Better results, deeper in

steady state, are obtained by the algorithm of Listing 5.3, where possible candi-



258 APPENDIX A. APPENDIX

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

P
o
w
e
r
:
 
1
-
P
[
T
y
p
e
 
I
I
 
e
r
r
o
r
]
=
1
-

β

Distance: E[X∞]-E[Xι]=∆

parabola displacement

(a) quadratic displacement: Equation (5.32)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2  2.5  3

P
o
w
e
r
:
 
1
-
P
[
T
y
p
e
 
I
I
 
e
r
r
o
r
]
=
1
-

β

Distance: E[X∞]-E[Xι]=∆

ARMA(5,5)

(b) ARMA(5, 5): Equation (5.33)

Figure A.4: Empirical values of the power 1−β determined by counting rejections
during the transient phase.



A.7. DESCRIPTION OF IMPLEMENTED SOFTWARE 259

dates for truncation points are not only shifted by one observation index but they

are growing geometrically with 2k−1.

In this appendix we have assessed the significance level α and the power 1−β

of our implementation of the Anderson-Darling 2-sample test empirically. Re-

sults are presented in Table A.2 and Figure A.2. By depicting the percentage of

rejections in Figure A.3 for each observation index we get an insight of how a

homogeneity test based on multiple comparisons could be implemented. Because

the Anderson-Darling 2-sample tests in one step of the algorithm are extremely

correlated the conservative approach of demanding that all homogeneity tests have

to acceptH0 works well for all our examples, which cover a wide range of possible

behaviour of simulation output processes. A recommendation is given how a test

can be implemented in the case where the conservative approach is not feasible

for the algorithm of Listing 5.1. This problem is very unlikely for the algorithms

of Listing 5.2 and Listing 5.3, because here the number of homogeneity tests is

constant in every step of the algorithms. Empirical values of the experiment-wide

significance level and power are also determined and presented in Figure A.4.

These results underline that the conservative approach delivers good results.

A.7 Description of Implemented Software

In the Chapters 4, 5 and 6 simulation experiments were done to demonstrate the

capability of the proposed methods and algorithms. For this purpose a software

tool was developed which implements the methodology. The programing lan-

guage C++ is used for implementation to guarantee fast execution time. Object

orientation is applied to assure that the source code is easy to understand and

maintain. It is straight forward to include extensions. A strict error handling pro-

vides the user with detailed information about inadequate use of the software. The

standard template library (STL) is used for all kinds of advanced data structures.

The software tool is developed for the operating system Linux, however, it can
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be compiled on an arbitrary operating system if necessary libraries are available.

For compilation Makefiles are provided. The source code is fully documented by

Doxygen. Details of the proposed methods are already given in previous chapters.

Here, the use of the software and its interfaces are described in brief. Further

implementation details can be found in the Technical Report [39-Eic07], which

is also available via the Internet pages of the Department of Computer Science &

Software Engineering of the University of Canterbury.

A.7.1 Initialisation

The initialisation of the software is done by an external text file, which contains

all necessary settings and parameterisation. This will be explained by examples.

The initialisation file contains entries in the form of:

[MethodID]
Parameter=Value

MethodID is an identifier for a method. All following entries are done for

this method. If no method is given, e.g. at the beginning of the initialisation file,

the entries are regarded to be global. Parameter is an identifier which should

not contain any special characters. Value can be a number or an identifier which

is assigned to the connected Parameter. Each entry is stated in one line of the

initialisation file. All text that follows “//” is regarded as comment and is ignored

by the parser. Note, the parser is case sensitive. The initialisation file should

contain sensible combination of the following entries:

// ***** Global *****
replications=99
resultfile=/home/results.txt

These settings are global entries. Replications is a necessary parameter which

should not be smaller than 3. Resultfile is an optional parameter which contains

the name of a file. The analyser is using this file to report final results.
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[deterministic_TPD]
execute=yes // yes, no
cutoff=100 // >0

The method deterministic TPD deletes a deterministic number of observation

indexes in the beginning of the simulation experiment. The number of deleted

observation indexes is given by cutoff. The parameter execute enables or disables

the execution of the method.

[sequential_TPD]
execute=yes // yes, no
ratio=auto // auto, >0
ratio_min=10 // >0
ratio_max=1000 // >ratio_min
alpha=0.05 // >0 and <1
performance=exact // exact, precise, fast
limit=10000 // >0

The method sequential TPD implements the algorithms described in Chap-

ter 5.4. ratio can either be a number or auto. If auto is chosen the parameterisa-

tion is done as described in Section 5.5 and ratio min and ratio max have to be

defined. alpha defines the significance level 1 − α of the Anderson-Darling test.

performance defines which algorithmic approach is used. Choose exact for the

approach of Listing 5.1, precise for the approach of Listing 5.2 or fast for the ap-

proach of Listing 5.3. limit sets the observation index after which the simulation

output process is regarded as unstable.

[sequential_batching]
execute=yes // yes, no
independence=vonNeumann // runsUpDown, runsAboveBelow, vonNeumann,

// pearsonStrelen, pearsonPermutation
statistic=mean // mean, spacing
batch_max=100 // >1
sort=yes // yes, no
alpha=0.05 // >0 and <1

The method sequential batching implements non overlapping batching and is

used to transform autocorrelated output data into almost independent data. By
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independence the test statistic can be defined. Choose runsUpDown or runs-

AboveBelow for the run test described in [128-SE43], [123-Sie56], [36-Edi61],

[20-Bra68] and [81-Knu98]; choose the setting vonNeumann for the test described

in [133-vN41] and [52-FY97]; choose pearsonStrelen for the test described in Ap-

pendix A.1 or choose pearsonPermutation for an exact test based on all possible

permutations (see e.g. [73-HP36], [107-Pit37], [135-WW43], [136-WW44] and

[35-DKS51]). In general, the use of pearsonPermutation is not recommendable

because of intensive computational effort. statistic defines the batch statistic. This

can be either mean for batch means or spacing for using the first observation of

each batch. batch max defines the number of used batches. If the parameter sort

is set to yes the data at each observation index is sorted. In this way batching is

executed on the order statistics, as needed for the quantile estimator described in

Section 6.2. alpha defines the significance level 1−α of the test for independence.

[evolution]
execute=yes // yes, no
start=1 // >0
stop=500 // >start
alpha=0.05 // >0 and <1

The method evolution implements the method described in Chapter 4. The

parameter start is an observation index that defines the starting point of the depic-

tion of quantiles and stop defines the last depicted observation index. alpha sets

the confidence level 1− α of the confidence interval of the estimated quantiles.

[spectral_analysis_QE]
execute=yes // yes, no
batches=128 // >3
alpha=0.05 // >0 and <1

The method spectral analysis QE implements the method of Section 6.2.1.

batches defines the number of batches and alpha defines the confidence level 1−α

of the confidence interval of the estimated quantiles.

[batch_mean_QE]
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execute=yes // yes, no
batches=128 // >3
alpha=0.05 // >0 and <1

The method batch mean QE implements the method described in Section 6.2.2.

As in spectral analysis QE, batches defines the number of batches and alpha de-

fines the confidence level 1 − α of the confidence interval of the estimated quan-

tiles.

[pooling_QE]
execute=yes // yes, no
quantiles_min=100 // >0
alpha=0.05 // >0 and <1

The method pooling QE implements the method of Section 6.3. quantiles min

defines the minimum number of quantiles to be estimated and alpha defines the

confidence level 1−α of the confidence interval of the estimated quantiles. For the

methods spectral analysis QE, batch mean QE and pooling QE sequential stop-

ping criteria have to be defined. Three different stopping criteria are implemented.

[confidenceInterval_SSC_QE]
execute=yes // yes, no

confidenceInterval SSC QE assures that all estimated quantiles have disjoint

confidence intervals.

[relativeErrorQuantile_SSC_QE]
execute=yes // yes, no
critical_value=0.05 // >0 and <1

relativeErrorQuantile SSC QE assures that the halfwidth of the quantile’s con-

fidence interval divided by the quantile estimate is smaller than critical value.

[relativeErrorRange_SSC_QE]
execute=yes // yes, no
critical_value=0.05 // >0 and <1

relativeErrorRange SSC QE assures that the halfwidth of the quantile’s con-

fidence interval divided by the observed range of the distribution is smaller than

critical value.
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A.7.2 Interface

After compilation the software can be executed by simply giving the name of the

initialisation file as the only parameter, e.g.:

./analyser_SynchronousMRIP InitialisationFile.init

Then, the analyser is started an is waiting for input via the pipe STDIN FILENO.

The concept of pipes is part of every modern operating system. One input entity

is the observations of all replications at the current observation index as a set of

long double values in binary form. The number of long double values is given by

the global parameter replications. The following source code is a basic example

which shows how to send data to the analyser.

std::list<long double> writeMe; // observed data
const size_t LDSize=sizeof(long double);
const int noReplications=writeMe.size();
unsigned char* buffer=0;
long double* ld_ptr=0;

buffer=(unsigned char*)malloc(LDSize*noReplications);
std::list<long double>::const_iterator it=writeMe.begin();
ld_ptr=(long double*)buffer;
for (int i=0;i<noReplications;++i){ld_ptr[i]=(*it);++it;}

int result = write(pipeID, buffer, LDSize*noReplications);
if (result <= 0) return false;
if (result != LDSize*noReplications) throw "error";

free(buffer);buffer = 0;ld_ptr = 0;

However, we recommend to use the more advanced routine send of the class

interface multipleRuns. This routine can be found in the folder share in file inter-

face.cc and is defined in file interface.h.

A.7.3 Simulation Environment

The analyser is the main software module that implements the methods and al-

gorithms which are discussed in previous chapters. It is designed to be part of
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a universal simulation controller, like Akaroa2 ([47-EPM99]), that supports data

collection, sequential analysis and stopping simulation when results become sat-

isfactorily accurate. To run the simulation experiments of previous chapters other

modules are needed as well. These modules can be regarded as test environment

for the analyser and will be discussed in brief.

A simulator is needed to create output data of various simulation processes.

Because we operate with multiple replications the pseudo-random number gener-

ator has to be coordinated. Therefore, each simulating process receives a number

representing which replication it is. On basis of this number the simulation pro-

cess can pick an exclusive and independent substream of random numbers. The

overall seed of the pseudo-random number generator is stored in a file. Once

the seed is used for a simulation experiment it is updated to initialise it for the

next simulation experiment. The pseudo-random number generator we used is

discussed in Section 3.5.

Another module is needed, which coordinates replications, analyser and the

flow of data. For the main inter process communication pipes are used. This is

a straight forward solution which needs to be extended when distributing replica-

tions e.g. in the Internet. To be able to e.g. stop processes in situations where an

error occurred signals are used. As the concept of pipes, the concept of signals is

part of every modern operating system.

Further modules are implemented for meta analysis (e.g. coverage of interval

estimates), to coordinate sequences of simulation experiments or to run just a

single simulation run for reasons of comparison with independent replications.

These modules are not explained in further detail.

Integration of the quantile analyser into Akaroa2 is not straight forward, be-

cause it follows a different scenario of parallel replications. Replications used

by Akaroa2 run without any synchronisation. They report local estimates at cer-

tain checkpoints, which are used to calculate a global estimate. This guarantees
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that there is no overhead due to communication between replications. Further-

more, each replication can run at its own speed. This is contrary to the scenario

of synchronised replications, which is needed for the methods of this research

work. Thus, forcing Akaroa2 to synchronise its replications will slow them down.

However, simulation analysis will be more powerful due to the ability to estimate

quantiles.
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