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ABSTRACT
The issue of the initial transient phase in steady state sim-
ulation has been widely discussed in simulation literature.
Many methods have been proposed for deciding the dura-
tion of this phase of simulation, to determine a valid trunca-
tion point of the transient portion of output data. However,
practically all these methods can only be used in simula-
tions aimed at estimation of mean values. In this paper, we
show that analyses of performance measures which do not
represent mean values require different solutions, as the rate
of convergence to steady state is different for mean values
than, for example, for quantiles. We describe and present
additional results for a new method of determining the dura-
tion of initial transient phase which can be applied in anal-
ysis of steady state quantiles and probability distributions.
The method appears robust and applicable in analysis of
arbitrary performance measures.

Categories and Subject Descriptors
I.6.6 [Simulation and Modeling]: Simulation Output Anal-
ysis; G.3 [Probability and Statistics]: Distribution Func-
tions; Stochastic Processes

General Terms
Performance, Algorithms, Experimentation

Keywords
Discrete event simulation, steady state, initial transient, trun-
cation point

1. INTRODUCTION
In every simulation experiment the initial state of the

model has to be set. Assuming that the main focus of simula-
tion is the long run behaviour of a simulated system, a good
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initial state would be a state, which is typical of the long run
behaviour. However, because the long run behaviour of the
model is unknown, this kind of initialisation is not possible
in general. To reduce bias in the final estimate a common
approach is to split the sequence of collected output data
into two parts. The first part contains data collected dur-
ing the initial transient phase and the remaining sequence
represents the steady state phase of the simulated system’s
behaviour. These two parts are separated by a data item
of index l, which is referred to as the truncation point of
the initial transient phase. In most methods of simulation
output data analysis, the output data from the first part of
the sequence are discarded before the rest of the collected
data sequence are used in analysis of steady state behaviour
of the system.

The rate of convergence towards long run behaviour de-
pends on the system itself, and also on the performance
measure considered. Most of the methods for determining
the truncation point l, which have been proposed so far, are
valid in mean value analysis only. Here, the aim is to de-
termine the truncation point l, which is valid for estimation
of any steady state parameter, regardless of whether it is a
mean, variance or quantile.

In the next section we will define a new class of trunca-
tion points by relating them to the type of analysed perfor-
mance measures they were introduced for. In Section 3 we
will demonstrate why this is needed by discussing, as an ex-
ample, the transient behaviour of quantiles of the response
time of an M/M/1 queue for different initial states. Then,
in Section 4, we will show that some well known methods
for the detection of steady state are not applicable in this
case. We suggest a method for the detection of steady state
in the sense of the underlying probability distribution. This
method can be used for analysis of arbitrary performance
measures. Results of our approach are discussed in Section 5
by calculating the probability distribution of the estimated
onset of steady state. Some conclusions are given in Sec-
tion 6. The discussion and results which are presented in
this paper are an extension of [5] and an excerpt of [6].

2. CONCEPT OF STEADY STATE
Practically all methods, which were proposed for estimat-

ing the duration of initial transient in simulation output
data analysis, are applicable in mean value analysis only.
Comprehensive surveys of these methods can be found in,
for example, [17] and [18]. The output stream of a simula-



tion run is a stochastic process {Xi}i∈N. In many simulation
studies the objective is to analyse the system’s behaviour in
the long run or in steady state, i.e. to analyse Xi as i → ∞.
During the steady state phase, i.e. for i ≥ l, the output data
are assumed to represent of the system’s steady state be-
haviour because they are (approximately) not influenced by
the initial state. Thus,

∀(i ≥ lF , ∆ ≥ 0, x) : FXi
(x) ≈ FXi+∆ (x) . (1)

We use lF instead of l to explicitly point out that the trun-
cation point is determined by inspecting FXi

(x). However,
it is known that different performance measures, in particu-
lar different moments, converge to steady state at different
rate. An empirical proof of this fact is shown in Section 3
of this paper. Thus, we can define the steady state phase in
terms of the mean by

∀(i ≥ lE, ∆ ≥ 0) : E [Xi] ≈ E [Xi+∆] . (2)

Equation (2) can be used if the only target of the simulation
is to estimate E [X∞]. We define the steady state phase in
terms of the variance by

∀(i ≥ lV , ∆ ≥ 0) : Var [Xi] ≈ Var [Xi+∆] . (3)

Other definitions may be appropriate, e.g. for the 0.95-quantile
of the distribution of Xi the truncation point l0.95Q could
be defined analogously to (2) and (3).

Constant first and second moments are necessary condi-
tions for (1). Thus, the steady state phase of the output
process must imply that the mean and the variance are in
their steady state phase, i.e. lE ≤ lF and lV ≤ lF . However,
whether lE ≤ lV or lE ≥ lV depends on the properties of
the output process. Note that it is possible to find processes
for which (2) and/or (3) hold, but not (1). In this situ-
ation E [X∞] can be estimated even though FX∞

(x) does
not exist. The counterpart of the steady state phase is the
transient phase with i < l. During the transient phase (1)
does not hold.

In analysis of stochastic processes stationarity is an impor-
tant property and is discussed e.g. in [16], [14] and [22]. A
stochastic process {X(t)}t∈T , not necessarily representing
simulation output data, is stationary (in the strict sense)
if its statistics are not affected by a shift in the time ori-
gin. This means that two processes {X(t)}t∈T and {X(t +
∆)}(t+∆)∈T have the same statistics for any ∆. The joint
distribution of any set of samples of a stationary process
does not depend on the placement of the time origin:

FX(t1),...,X(tj)(~x) = FX(t1+∆),...,X(tj+∆)(~x), (4)

for all time shifts ∆, all j and all choices of sample times t1,
. . ., tj . If (4) is true, not for any j, but only for j ≤ k the
process {X(t)}t∈T is stationary of order k. Therefore, the
simulation output process {Xi}i≥lF can be assumed to be
stationary of first order, if (1) can be fulfilled.

3. TRANSIENT BEHAVIOURS OF M/M/1
SYSTEMS

In this section we demonstrate the kinds of convergence of
FXi

(x) towards FX∞
(x) that may occur, by considering an

M/M/1 queueing system. Its steady state behaviour and its
transient behaviour are well known ([13], [15] and [12]). The
distribution of the number of customers Ni in the system at
the arrival time of the ith customer can be calculated by a

Markov chain approach, imbedded at arrival times. Based
on the distribution of Ni other measures can be calculated,
e.g. the system’s response time Ri (the sum of waiting time
and service time) of the ith customer. The probability dis-
tributions, mean values and quantiles (or more specifically
deciles) depicted in Figure 1 were calculated by the analyt-
ical approach.

First we study the transient behaviour of a M/M/1 server
initialised with an empty queue and an idle server. This
initialisation state is chosen very often, because it is this
system’s state with the highest probability for ρ < 1. We
chose λ = 0.95 and µ = 1 resulting in ρ = λ

µ
= 0.95. In

Figure 1(a) the mean and the deciles of FRi
(x) are de-

picted, so that the ordinate shows the range of Ri and the
abscissa shows i. The mean and the deciles are strictly
monotonically increasing and converging. Even though the
M/M/1 server is initialised with its state of highest prob-
ability a transient phase is present. We note in passing
that the convergence of the mean value is similar to the
convergence of the 6th decile. This is not surprising, as
FR∞

(E [R∞]) = 1 − e−E[R∞]µ(1−ρ) ≈ 0.632. Smaller deciles
converge faster, higher deciles converge slower. However, the
general form of convergence looks similar for the mean and
all deciles. In Figure 1(b) the distribution FRi

(x) is plotted
for selected values of i and for i = ∞, so that the ordinate
shows the cumulative probability and the abscissa shows the
range of Ri. The distribution FRi

(x) is a weighted sum of
Erlang distributions and the limit response time distribution
is exponential. Thus, in (rough) approximation we can re-
gard FRi

(x) as an exponential distribution with increasing
mean value as i is growing. Thus, the convergence can be
loosely described as a scaling of the distribution.

For our second example we use λ = 0.95 and µ = 1. This
gives E [N∞] = ρ

1−ρ
= 19 customers. Therefore, we chose

19 initial customers. This is depicted in Figures 1(c) and
1(d), including the response time of the initial customers
(i ≤ 19). Again, FRi

(x) converges towards FR∞
(x). How-

ever, in Figure 1(c) we can see that in this case the conver-
gence is not monotonic. This is because the form of FR20 (x),
the response time of the first non-initial customer, is differ-
ent from the form of FR∞

(x). In Figure 1(d) we can see that
the density of FR20 (x) is almost symmetric and FR∞

(x) is
an exponential distribution. Here, we cannot assume that
the convergence can be described by a fixed class of distri-
butions with an additional scaling or displacement. This is
interesting especially for mean value analysis, as it cannot
be assumed that the mean value is constant right from the
beginning of a simulation if the system is initialised with
E [N∞] customers. We note that our results conform to the
observation of [13] that in some simple queues the optimal
initial state for mean value analysis is higher than E [N∞].

In our last example we choose an initial state, which is
much higher than E [N∞]. We used λ = 0.8, µ = 1 and
one hundred initial customers of the M/M/1 server. In Fig-
ures 1(e) and 1(f) we can see that the density of FR101 (x),
the response time of the first non-initial customer, is almost
symmetric, i.e. clearly non-exponential. FRi

(x) converges
until it is exponentially distributed at i = ∞. Again, no
constant distribution can be assumed, and also there is an
obvious displacement of the mean value during the transient
phase.

Thus, we see that the convergence of FRi
(x) towards

FR∞
(x) is complex, even in the case of the M/M/1 server.
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(a) Deciles: λ = 0.95, µ = 1, empty and idle
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(b) FRi
(x): λ = 0.95, µ = 1, empty and idle
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(c) Deciles: λ = 0.95, µ = 1 and 19 initial customers
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(d) FRi
(x): λ = 0.95, µ = 1 and 19 initial customers
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(e) Deciles: λ = 0.8, µ = 1 and one hundred initial customers
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(f) FRi
(x): λ = 0.8, µ = 1 and one initial hundred customers

Figure 1: Theoretical convergence of deciles and cumulative distribution function of response times of the
M/M/1 server with different initial states. Depicted is the evolution of deciles (dashed) and the mean (bold)
and FRi

(x) of selected customers i (dashed) and for i = ∞ (bold).



For some i the density of FRi
(x) can be almost symmet-

ric, whereas FR∞
(x) is exponentially distributed. The form

of the convergence depends heavily on the initialisation of
the server. The convergence of the mean is not necessarily
monotonic and can be either like or unlike the convergence
of deciles.

4. CONSTRUCTION OF DETECTION
METHODS

The main purpose of this section is to discuss why classical
methods for the detection of a steady state mean are not
applicable to detect steady state in terms of the underlying
distribution function. To demonstrate that it is possible to
implement a detection method that is based on (1) a brief
discussion of this implementation is given.

Our interest focuses on automated and sequential analysis
of arbitrary performance measures. Therefore, a detection
method of the steady state in terms of (1) is needed because
if steady state in the sense of distribution is reached then it is
guaranteed that all other performance measures (moments,
quantiles, etc.) have reached steady state as well. Thus, an
estimator for lF is needed. Detection of the steady state in
terms of (2) or (3) is legitimate if the interest is on analysis
of means or variances only. If the data is truncated at lF
the remaining data can be assumed to be approximately
identically distributed. This is a very strong property and
it is important for many statistical methods. In automated
analysis we cannot require any previous knowledge of the
output data. Thus, the detection method must be able to
deal with a wide range of transient behaviours, including
unstable models.

As we have demonstrated in Section 3, the transient be-
haviour of even a simple system can be quite complex. To
construct an estimator of lF that is valid for any output
process a robust detection method is needed. We will dis-
cuss some detection methods that have been proposed for
determining lE and demonstrate why they are not always
applicable. A comprehensive survey about known detection
methods is given by [17]. An updated discussion can be
found in [18].

Firstly we need a method that can be reliably automated.
A detection method for lF should be based on reliable sta-
tistical tests and confidence levels. Any test that requires
a visual inspection by the analyst is not acceptable for rea-
sons of credibility and accuracy. This is important espe-
cially for automated output analysis. For example a popu-
lar method for detecting the transient phase is the method
of [23]: the original output data is smoothed to distinguish
between high a low frequency fluctuations. The analyst has
to decide when the curve flattens out and, thus, selects the
truncation point. Because of the necessary interaction of the
analyst, this method has limited use in automated output
analysis.

Practically all known detection methods are based on de-
tection of constant mean values; see [10]. The crossing of the
mean rule in [9] is one of the earliest recommended tests. It
fails in the detection of lF for simple output process with
a constant mean but growing variance; e.g. for Xi = ciǫi,
where c is a constant value and ǫi is a Gaussian white noise
process. This process is unstable, however, the crossing of
the mean rule will deliver an estimate lE. A robust method
should not return an estimate if the output process is un-

stable.
In [20] and [21] the detection of a truncation point is based

on the assumption that the transient behaviour is a dis-
placement of a stationary process: Xi = µi + X ′

i, where the
sequence {µi}

∞
i=1 is converging and X ′

i is stationary. The
transient behaviour of the M/M/1 server, which is depicted
in Figure 1, violates this assumption for all three different
initialisations. Therefore, these detection methods cannot
be recommended to detect lF in queueing systems.

Several more recent methods are based on the variance of
the sample mean. For example in [4] or [11] the variance
of the sample mean during the transient phase is assumed
to be greater then during steady state. This does not hold
in general, and especially for the M/M/1 server, initialised
empty and idle, this assumption may be too strict. In Fig-
ures 1(a) and 1(b) one can see that Var [Ri] < Var [Rj ] if
i < j.

Another approach to reduce the initial bias is discussed
in [2]. The described approach aims at estimating a trun-
cation point after which random variables can be assumed
to be identically distributed. Because it is aiming at equally
distributed data, this approach is superior over other trun-
cation point detection rules, which demand e.g. a constant
mean only. It is applicable for one single simulation run as
well as for multiple replications. The need for a fully auto-
mated approach by avoiding unspecified parameters is un-
derlined. However, algorithmic properties of this approach,
such as time complexity, storage requirements and sequen-
tial execution, are not discussed. This approach is discussed
from the point of view of steady state analysis of mean values
only.

A possible source of error is that the convergence is often
assumed to be monotonic. This cannot be assumed in gen-
eral. A process may even be periodic. In this case the pro-
cess is not stable at all and lF cannot be estimated. Methods
which try to estimate a truncation point lF by combining
data of different observation indexes i are in danger of over-
looking the instability. For example the method of Welch
fails if the selected window size is similar to the length of
the periodic cycle. This is demonstrated in [3]. The same
problem occurs for the method of [18]. If the batch size is
similar to the length of the periodic cycle this method fails.

The previous discussion on well known methods for re-
ducing initial bias suggests that in automated analysis a
detection method of lF should require very little about the
output process. Instead we propose a direct implementation
of (1) in [6], [5] and [7]. The use of p replications executed in
parallel enables establishing an independent and identically
distributed random sample, consisting of p observations, of
each Xi. These random samples can be compared with each
other. A homogeneity test can be used to test equality in
distribution. In [6] and [5] the Anderson-Darling k-sample
test ([1] and [19]) is used for this purpose. This method
processes the data by splitting it into a transient phase and
an assumed steady state phase. The size of the transient
phase is increased sequentially in order to find a valid trun-
cation point. The size of the assumed steady state phase is
increased proportionally so that the proportion between the
size of the transient phase and assumed steady state phase
is constantly 1 : r. The random sample at the current candi-
date truncation point is compared with the random sample
of the assumed steady state phase. If the homogeneity test
supports the hypothesis of equality in distribution, a valid



truncation point is assumed to have been found. Otherwise,
this random sample is regarded as transient and more data
is added to the assumed steady state phase. This method is
able to deal with all the special cases described above (see
[6], [5] and [7]). It can be used in analysis of arbitrary per-
formance measures, like the mean, the variance or quantiles.
As far as we are aware, this approach is the only method
that aims at first order stationarity of the simulation output
process.

The pseudo code of this approach is given in Listing 1. For
convenience some special notation is used. Using the opera-
tors +, −, / and := in conjunction with random variables Xk

or S, see lines 3, 9, 12 and 13, means to use these operators
on each component of the relevant sorted random sample
separately. By S we denote a random sample {sj}

p
j=1 of

size p that is the sum of all ordered sequences which are not
part of the transient period. Let {xjk}

p
j=1 be the observed

random sample of Xk and let {yjk}
p
j=1 be the associated

sorted sequence, then sj =
Pn

k=l+1 yjk. New observations
are added, see line 9, whereas observations of the transient
period are subtracted from S, see line 12. Dividing each
component sj by the number of addends results in an esti-
mate of FX∞

(x). The operator ≈ in line 15 and 19 refers
to the homogeneity test. The procedure autoSelect sets r
automatically according to the properties of the output pro-
cess. This automatic selection starts with r = rmin and in-
creases r until a random sample is found, that is not equally
distributed. If r ≥ rmax it can be assumed that there is
no initial transient present. We used rmin = 10 to assure
that the part of the assumed steady state phase is one mag-
nitude larger than the assumed transient phase. We used
rmax = 105 which is a valid choice for all our test models and
many other commonly used simulation models. For details
on the selection of r see [6]. The procedure uniform(a,b) de-
livers a uniform distributed integer random number between
a and b used as index. This algorithmic approach is efficient
because its run time complexity is O(np log(p)), where p is
the number of parallel replications and n is the number of
collected observations of each replication. A proof of the
time complexity and more details about the algorithmic ap-
proach can be found in [7].

Listing 1: Pseudo code of the algorithmic approach.
0 int n := 0 ; // 1 ≤ n < ∞

int l := 0 ; // 1 ≤ l < n
int r :=au toSe l e c t ( ) ; // rmin ≤ r ≤ rmax

S := 0 ; S′ := 0 ; // averaged random samples

5 bool NoTestFai led:= fa l se ;
while (¬NoTestFai led){

n := n + 1 ;
obse rve (Xn ) ; // sample of p observat ions
S := S + Xn ;

10 i f (0 6= n mod (r + 1)) continue ;
l := l + 1 ;
S := S − Xl ;
S′ := S/(n − l) ;
NoTestFai led:=true ;

15 i f (¬(FXl
(x) ≈ FS (x))) NoTestFai led:= fa l se ;

for ( int k := 1 ; k ≤ r ;k := k + 1){
i f (¬NoTestFai led) break ;
int u :=uniform (lk + 1,l(k + 1) ) ;
i f (¬(FXl

(x) ≈ FXu (x))) NoTestFai led:= fa l se ;
20 }

}

5. TRUNCATION POINT DISTRIBUTION
Various estimators have various forms of probability dis-

tributions, e.g. means from normal populations are usually
t-distributed. Here, we show that there is no typical prob-
ability distribution of lF . The form of the distribution of
lF depends on the output process itself. With the following
examples we demonstrate that the distribution of lF can be
very different. The empirical CDFs, which are depicted in
this section, are based on more than 104 replications. We
used 100 replications for each estimate of lF and repeated
the experiment more than 100 times. The algorithmic ap-
proach of Listing 1 combined with the Anderson-Darling k-
sample test, as described by [5], is used in all experiments.
For parametrisation the recommended standard values are
used, i.e. we used 100 parallel replications and significance
level 1 − α = 0.95.

The transient phase of the first example is governed by a
quadratic displacement:

Xi =

(

ǫi + k

l2
(i − l2) if i < l,

ǫi else,

where k is the offset. Here, Xi has a well defined truncation
point l = lF . E [Xi] is governed by a parabola for i < l. For
all simulation experiments with this model we chose k = 10
and lF = 100. In Figure 2(a) we can see that the estimates
are distributed around observation index 90. The distribu-
tion is a step function that appears to have a symmetric
density. Most estimates are a bit smaller than the optimal
lF as the convergence in (1) is from below. Note that ap-
proximate equality is implemented by the significance level
of the homogeneity test, which is 1−α = 0.95 for all exper-
iments in this section.

The next output process is a damped vibration.

Xi = ǫi + (kei
ln(0.05)

l ) · cos(iω),

where k is the amplitude and T = 2π
ω

is the cycle length. k is
damped by an exponential function. At i = l the exponential
function is 0.05, therefore, a truncation point lF ≥ l can be
regarded as a suitable truncation point. In our experiments
we used k = 10, T = 50 and l = 250. In Figure 2(b) one can
see that all estimated lF are greater than l. Because of its
non-monotonic transient behaviour the distribution of the
estimated truncation points is multi-modal. The maxima,
resp. minima, of the amplitudes of the damped vibration are
directly visible in the empirical distribution. Whenever the
process is close to a maximum or minimum it is unlikely that
the method detects a truncation point. The maxima and
minima of our analysed output process are located at 1

4
jT ,

where j is a positive integer value. Compare this locations
with the observation indexes 300, 325 and 350 in Figure 2(b).

In Figure 2(c) the distribution of the estimated truncation
points of the M/M/1 server with ρ = 0.95 and no initial cus-
tomer is depicted as our third example. Again, the observed
measure is the systems response time Ri of the ith customer.
The density distribution seems to have a long right tail and
there is no clear mode. The convergence of FRi

(x) towards
FR∞

(x) is slow and the range of the distribution is large.
Figure 2(d) shows again the distribution of lF for Ri of the

M/M/1 server, but here ρ = 0.8 and there are one hundred
initial customers. The density distribution is right-skewed.
The range of the distribution is much smaller than that of
the previous example. This shows that the high initial state
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Figure 2: Histogram and empirical CDF of estimated truncation points.

introduces a transient behaviour which is easier to recognise.
The experiments in this section support the earlier state-

ment that the probability distribution of lF can have various
forms. This depends on the output process itself. We can
see that the estimation of lF is robust and valid for a wide
range of transient behaviours. In general we expect a sym-
metric density if lF is well defined as in the first example.
If FRi

(x) → FR∞
(x) as it tends to infinity, we expect a

density function of lF with a longer right tail. Slow conver-
gence is very challenging for any truncation point estimation
method.

There are two possibilities when estimating lF . On the one
hand we may wish to estimate lF as accurately as possible.
This involves cases when lF is possibly too small and some
bias possibly remains in the assumed steady state phase.
However, this approach assures that the deleted amount of
data is small. This approach is recommendable if the col-
lection of observations is expensive in sense of computer run
time and is described in Listing 1. Alternatively, we may
wish to be confident that the estimate of lF is greater than
its theoretical value. Although this might be more wasteful,
however, bias is reduced. This approach can be integrated
easily into the previous truncation point detection method
by deleting all the observations collected so far, including a

part of the steady state phase. This might be recommend-
able for our third example to assure that the truncation
point is deep in the steady state phase.

6. CONCLUSIONS
We have shown that the rates of convergence to steady

state in simulation are different for different performance
measures. If steady state in terms of the probability distri-
bution is detected, then all parameters specifying this prob-
ability distribution have achieved their steady state values.
Subsequently, output data collected during this stage of sim-
ulation will produce estimates of arbitrary performance mea-
sures which is unbiased by the initial transient conditions. If
steady state in terms of a specific moment is detected only,
then such a claim is valid only for estimates of that mo-
ment. For example, the truncation point lE can be use in
mean value analysis, but it would be generally inappropriate
to use it as the truncation point for steady state quantiles.
However, in both cases, one could use the truncation point
lF .

Earlier proposed methods for determination of truncation
points are confined to special classes of output processes and
are applicable in mean value analysis. The method proposed
in this paper is valid in analysis of arbitrary performance



measures. It is based on the definition of the truncation
point lF , resulting from (1). Therefore, it is more robust
than any method which implements only (2), (3) or both.
An application of this method in analysis of multiple steady
state quantiles is demonstrated in [8].

Empirical distributions of lF obtained from our simula-
tions show that the form of such a distribution can vary
from almost symmetric to strongly right-skewed. The shape
depends on the type of convergence of a given process to
steady state (it could be monotonic, non-monotonic or even
oscillating), as well as on the convergence rate.

Our method is based on homogeneity tests of independent
and identically distributed random samples of different ob-
servation indexes. This is possible due to running multiple
replications concurrently. We can see that output data anal-
ysis based on multiple parallel replications has got properties
that make analysis of probability distributions feasible.
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