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Abstract: Stochastic simulation has become a well established paradigm used in performance evaluation of various
complex dynamic systems. Most simulation output analysis is confined to the estimation of mean values. This is
true for both finite horizon and steady state simulation. The estimation of quantiles provides a deeper insight into the
simulated model. In this paper we describe a method for estimating time evolution of several quantiles within some
time interval. It is based on independent replications and its capability is demonstrated by simulating processes with
different kinds of stationary, non-stationary or transient behaviour.
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INTRODUCTION

Stochastic simulation has become a well established
paradigm used in performance evaluation of various
complex systems, such as the Internet. Most simula-
tion output analysis is confined to the estimation of
mean values. This is true for both finite horizon and
steady state simulation. Using estimators of mean val-
ues, the results of the simulation can answer questions
about the average system state, such as: How many
customers are there on average in the queue? The esti-
mation of quantiles provides a deeper insight into the
simulated model. Quantile estimation can addition-
ally answer questions like: What is the probability of
more than k customers in the queue? Questions of this
kind are often of more interest to the decision-maker.
The complexity of quantile estimation is higher than
the complexity of mean value estimation, but the esti-
mation of quantiles can give a deeper insight into the
system of interest. This is true especially if several
quantiles can be estimated. A set of several quantiles
can be used to approximate a probability distribution
function.

The most important property of a quantile estimate
is its statistical accuracy. The variance of a quan-
tile estimator usually decreases as the number of ob-
servations increases. Random errors are caused by
the stochastic variations of the simulation. They are
caused by the fact that every simulation is like a sta-
tistical experiment. The next source of error is the
bias of the estimator itself, being often called the sys-
tematic error. This kind of error usually appears if
assumptions about the analysed data hold only ap-
proximately or asymptotically. If both the variance
and the bias tend to zero for large number of obser-
vations, the estimator is called consistent. More de-
tails about these statistical properties of quantile es-

timators can be found in [Jain and Chlamtac, 1985].
There are further properties besides these statistical
ones which characterise a suitable estimator. Storage
requirements and calculation time are quite important
because usually a huge amount of output data needs
to be processed to obtain trustworthy results. There-
fore, not only the mathematical definition of the es-
timator, but also the way it is computed is of inter-
est. Efficient data structures and algorithms are impor-
tant. To guarantee a proper use of the estimator, even
by inexperienced users, it is important that the quan-
tile estimator is easy to understand and that the num-
ber of user-specified parameters is small, preferably
zero. A classification of these properties are given
e.g. in [Goldsman and Schmeiser, 1997] for the gen-
eral problem of estimating standard error.

Single Quantile

The estimation of one quantile of a steady
state distribution, when simulating a single
instance (or “single replication”) of a time-
stationary process, is considered by Iglehart,
Seila, Heidelberger and Lewis, Jain and Chlam-
tac, Chen and Kelton (see e.g. [Igelhart, 1976],
[Seila, 1982], [Heidelberger and Lewis, 1984],
[Jain and Chlamtac, 1985] or the more recent article
[Chen and Kelton, 1999]). The methods of Igelhart
and Seila are limited to regenerative processes. The
subdivision of the output data into its regenerative
cycles is a natural way to overcome the problem
of autocorrelation. The method of Seila extends
the method of Igelhart by grouping the regenerative
cycles into batches. The number of parameters
which have to be specified by the user is reduced
by this batching approach to one parameter: the
batch size. However, the determination of the
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batch size is a difficulty common to every batching
approach; it is difficult for an inexperienced user
to choose an appropriate value. The method of
Heidelberger and Welch addresses the problem of
quantile estimation in dependent sequences. Their
method is not limited to regenerative processes. The
point estimate based on ordered data is still valid
in the dependent case, but its variance is inflated
leading to a larger interval estimate. Two basic
solutions are given. On the one hand, the higher
variance can be calculated directly with the spectral
method (see [Heidelberger and Welch, 1981]). On
the other hand, the data can be transformed to almost
independent data by using a batch means method (see
e.g. [Fishman and Yarberry, 1997]). The method of
Jain and Chlamtac uses a completely different kind
of quantile estimator. Their estimator is based on
markers, which are adjusted when collecting new
observations. This is done by a piecewise-parabolic
interpolation. Because of this interpolation, this
method is not recommended for quantile estimation
of discontinuous distribution functions. The estimator
seems to be quite complicated compared to the usual
estimators based on ordered data. However, the
principal advantage is that the method requires only
a constant (and small) amount of memory. Chen and
Kelton describe a method that estimates a quantile
by focusing on observations which are located in
the neighbourhood of this quantile. Their method
is sequential to ensure an accurate final estimate.
However, the quality of this method has not been
exhaustively studied yet.

A method for quantile estimation in
finite-horizon simulation is described
in [Avramidis and Wilson, 1995] and
[Avramidis and Wilson, 1998]. This method is
based on multiple replications of the finite-horizon
simulation. These replications are dependent on
each other because negative correlation is introduced
into their streams of input random numbers to
reduced variance. Avramidis and Wilson propose
that this approach yields improvements under special
assumptions (see also [Jin et al., 2003]).

The estimation of one single quantile is usually done
to analyse the tail behaviour of a distribution. In this
case typically the 0.95-quantile (resp. 0.05-quantile)
is estimated. For more extreme quantiles than this it
might be more appropriate to use rare event simula-
tion. However, sometimes the median (0.5-quantile)
is estimated instead of the mean value, because the
median is more robust against outliers.

Several Quantiles

If the analyst is interested in the complete distribu-
tion function of a performance measure the estima-
tion of several quantiles is useful, because the quan-
tiles describe the probability distribution at special

points. The estimation of several quantiles of the
steady state distribution is addressed by Raatikainen
(see [Raatikainen, 1987]. The method of Jain and
Chlamtac is extended by introducing additional mark-
ers to estimate more quantiles. The adjustment of the
markers is done in the same way as before. An in-
vestigation of the variance of this method is given in
[Raatikainen, 1990].

One of the main difficulties in quantile estima-
tion is the high computational effort and the large
amount of storage needed to order the observa-
tions. Therefore, Heidelberger and Welch re-
duce the sample size by a maximum transforma-
tion (see [Heidelberger and Lewis, 1984]). Jain,
Chlamtac and Raatikainen go further and avoid
sorting the output data by using an interpola-
tion. In recent publications of Hashem, Schmeiser
and Wood (see [Hashem and Schmeiser, 1994] and
[Wood and Schmeiser, 1994]) or Chen and Kel-
ton (see [Chen and Kelton, 2001] and [Chen, 2002])
quantile estimators based on order statistics have be-
come popular again. This may be due to increased
memory and processor speeds making these methods
more practical. Wood and Schmeiser describe a batch-
ing method for quantiles which is similar to batch
means and consider different quantile estimators, all
based on ordered observations. The batch statistic is
given by one of four quantile estimators, which are
all based on ordered observations. Again, the diffi-
culty is how to chose an appropriate batch size. In
[Chen and Kelton, 2001] the previous method of esti-
mating a single quantile is extended to the problem
of estimating several quantiles. Again, the extended
method is sequential as the previous version.

Several Quantiles Over Time

An extension of the problem of estimating several
quantiles at a given time interval, or equivalent, for
time-stationary processes, is analysis of the time evo-
lution of these quantiles as the simulation progresses.
This provides deeper insight into the transient be-
haviour of the system of interest. In steady-state sim-
ulation this can help to verify if a steady-state phase
exists, i.e. that the probability distribution function of
the analyzed performance measure converges to its
steady-state form. The onset of the steady-state could
be determined for example by the method presented
in [Bause and Eickhoff, 2003].

In applications, finite-horizon simulation is frequently
used to examine a given process with a certain ini-
tial state. In this case the transient behavior of
the system is the central point of analysis. Again,
the estimation of several quantiles over time pro-
vides a deeper insight than mean value analysis
only. The application areas of quantile estimation
are as vast as the application areas of simulation it-
self. Inventory systems, queueing systems, com-
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puter systems, real-time control applications, finan-
cial industry, Internet and many more are explic-
itly mentioned in literature as areas of applications
(see e.g. [Igelhart, 1976], [Jain and Chlamtac, 1985],
[Fischer et al., 2001] or [Jin et al., 2003]).

The estimation of several quantiles in possibly time
non-stationary processes has had limited attention. In
the following section the use of multiple replications
for this topic is discussed. Then two alternative meth-
ods are discussed, which are able to select a suitable
number of quantiles based on their confidence inter-
vals. The better method is used to examine examples
with a variety of different transient behaviors. Con-
clusions are given in the last section.

INDEPENDENT REPLICATIONS

The main problem in quantile estimation is that the
output data X1, X2, . . . of a single simulation run
is typically non-stationary and autocorrelated (see
e.g. [Lee et al., 1999]). Therefore, the amount of out-
put data required can be immense, which causes a
problem when storing and sorting the output data. Us-
ing p independent replications of the simulation is a
well known approach to obtain independent sequences
of output data. Let

{
{xj,i}nj

i=1

}p

j=1
denote the col-

lected observations. xj,i is the ith observation of the
jth replication. nj is an unbounded value which de-
notes how many observations are collected in the jth
replication. With limited loss of generality we will
assume that ∀j : nj = n. Additionally, let us as-
sume that ∀j : Xj,i = Xi holds for a constant value
of i, where Xj,i is the random variable of the obser-
vation xj,i. This means that the ith observations of
all replications describe the same (possibly) transient
measure. For example the ith observation could be the
delay of the ith customer leaving a system, or it could
be defined as the queue length at model time i · 100
seconds. These assumptions ensure that the data in the
ith column is independent and identically distributed,
i.e.

Pr [∀j : Xj,i ≤ x] =
∏
j

Pr [Xj,i ≤ x]

and
∀j : FXj,i(x) = FXi(x),

respectively. FXi
(x) = Pr{Xi ≤ x} denotes the cu-

mulative probability distribution function (CDF) of a
random variable Xi. In [Bause and Eickhoff, 2003]
these assumptions are used to determine a truncation
point for steady state simulation.

Here, these assumptions allow us to estimate the cu-
mulative probability distribution FXi(x), by

F̂Xi
(x) =

1
p

p∑
j=1

ζ(x− xj,i) (1)

with

ζ(∆) =
{

1, if ∆ ≥ 0,
0, else.

F̂Xi
(x) is called the empirical cumulative distribution

function (ECDF). The value of F̂Xi(x) is determined
by counting how many observations of {xj,i}p

j=1 are

smaller than x. If k values of F̂Xi
are of interest,

the use of Equation (1) leads to a time complexity of
O(kp), which is quite inefficient. In this situation it
is advisable to base the estimation on a sorted ran-
dom sample. Let {yj,i}p

j=1 be the ordered sequence
of {xj,i}p

j=1. Equation (1) can be changed to

F̂Xi(x) =
1
p

min(j|x ≥ yj,i) (2)

with 1 ≤ j ≤ p and F̂Xi
(x) = 0 for x < y1,i. The

calculation of k points of F̂Xi(x) from Equation (2)
can be done in O(k + p log p), because the data has
to be sorted only once. Furthermore, each value yj,i is
an estimate of the q-quantile of FXi

at q = j/p.

The q-quantile of the cumulative probability distribu-
tion FXi

is defined by q = FXi
(xq) and therefore,

xq = F−1
Xi

(q) = inf{x|FXi
(x) ≥ q}

is the location of the q-quantile in the case of a contin-
uous distribution FXi

(x). A valid estimator for the lo-
cation of the q-quantile at observation index i is given
by

x̂q = ydpqe,i. (3)

To simplify the notation, the dependence on i is omit-
ted on the left side of the equation. The half width
of a confidence interval of x̂q can be described in two
ways:

either as x̂q ∈ xq ± ε′q or x̂q ∈ xq±εq
.

ε′q describes an interval in the range of the measure
and εq describes an interval in the range of the prob-
ability (see [Chen and Kelton, 1999]). Note, the in-
terval q ± εq should not exceed the bounds 0 and 1.
ε′q and εq are dependent on each other. If one is de-
creased, e.g. ε′q, the related εq will decrease automat-
ically. However, in steep areas of FXi

we expect ε′q
to be smaller (relatively) than εq. In flat areas of FXi

we expect ε′q to be bigger (relatively) than εq. This is
demonstrated in Figure 1 with the example of an ex-
ponential distribution. Note, the difference between
the steep and the less steep regions of the curve.

In general, ε′q can be calculated from

Pr{yl,i ≤ xq < yu,i} = 1− αl,u (4)

=
u−1∑
j=l

(
p

j

)
qj(1− q)p−j

by decreasing l and increasing u until
the chosen confidence level (1 − α) ≤
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Figure 1: Confidence intervals for quantiles.

(1 − αl,u) is reached (see [Conover, 1999] and
[Heidelberger and Lewis, 1984]). l and u are both
ranks in the ordered sample {yj,i}p

j=1 of the original
observations {xj,i}p

j=1 and describe the location of
the lower and the upper border of the confidence
interval. They should not exceed the rank borders of 0
and p. Note that neither the value of the lower border
yl,i nor the value of the upper border yu,i are involved
in the calculation of the Equation (4). Theoretically,
the distributions of order statistics are not symmetric,
in general. However, in our calculations we always
decrease l in the same way as we increase u, therefore
our obtained confidence intervals are symmetric.

In [Chen and Kelton, 1999] it is demonstrated that εq

can be chosen from the inequality

p ≥
z2
1−α/2q(1− q)

ε2q
, (5)

where z1−α/2 is the 1 − α/2 quantile of the standard
normal distribution. εq can be calculated in depen-
dence of p, q and z1−α/2. The confidence level α
can be regarded as a constant parameter, and hence
z1−α/2. q defines the quantile itself. p remains as the
only important parameter. Note, εq does not depend
on the collected observations.

Both, Equation (4) and Inequality (5) do not depend
on the output data itself. Therefore, both formulas can
be used to estimate the half width before the simula-
tion experiment starts. From the point of view of mean
value analysis, this is quite surprising as a confidence
interval for an estimated mean value depends on the
output data itself. However, Equation (4) and Inequal-
ity (5) mainly depend on the number of replications
p, because the confidence level 1 − α can be consid-
ered in both cases as a constant parameter. Therefore,
p is the most important parameter in the methods de-
scribed in subsequent sections.

To fully investigate the transient behaviour of a mea-
sure of interest an analysis of several quantiles over

time is needed. As discussed above, the use of inde-
pendent replications enables the estimation of FXi

(x)
based on the j/p-quantiles. However, is it really ap-
propriate to use all of these 1/p, · · · , j/p, · · · , 1 quan-
tiles to e.g. depict the transient behaviour? Because
the confidence intervals of two adjacent quantiles at
j/p and (j + 1)/p overlap extensively it is question-
able to use both quantiles. To allow a clear depiction
the quantiles should be chosen with non-overlapping
confidence intervals. This suggests a method which
determines a maximum number of quantiles with non-
overlapping confidence intervals, for a given number
of replications p, because the half width of the confi-
dence interval of x̂q depends on p.

SELECTION OF QUANTILES

As already noted, the calculation of the confidence
interval of the q-quantile based on Equation (4) and
Inequality (5) does not depend on the output data it-
self, but on the number of replications p, the confi-
dence level 1−α and q itself. Because the confidence
level can be considered as a given parameter the main
question is: How to choose several q-quantiles as a
function of p? The basic idea of the algorithms de-
scribed in this section is to choose the 0.5-quantile as
the starting point and to choose all other quantiles in
a way that their confidence intervals do not overlap.
A larger number of replications will produce smaller
confidence intervals and this enables the selection of
more quantiles with non-overlapping confidence inter-
vals.

Rank Domain

Our first method is based on Equation (4). In the be-
ginning the first quantile 0.5 is estimated and its confi-
dence interval is calculated by extending l and u until
the desired confidence level 1 − α is reached. l and
u describe the indexes in {yj,i}p

j=1 of the bounding
values of the confidence interval. The selection of the
next two quantiles which have non-overlapping and
non-disjoint confidence intervals is not straight for-
ward because Equation (4) has no closed form. There-
fore, we perform two binary searches in the directions
above and below 0.5. The binary search in the di-
rection below 0.5 stops if a quantile is found with an
upper bound u′ being equal to l. Analogously, the
binary search in the upper direction stops if a quan-
tile is found with a lower bound l′ equal to u. These
binary searches give the next quantiles. The binary
searches are repeated until it is not possible to find
another quantile with a confidence interval in the un-
processed area between the last l and 1 (resp. u and
p). This calculation can be performed before the sim-
ulation experiment starts, and therefore, the run time
of this method does not really matter. For convenience
a linear search, leading to a worse run time, could be
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performed instead of the binary search.

An example of the binary search is depicted in Fig-
ure 2. The first selected quantile is q = 0.5, which is
located at the rank 0.5 · p in the ordered sequence. Its
confidence interval can be calculated by Equation (4),
and so the lower bound located at the rank lp/2 is
known. The unprocessed area reaches now from 0
to lp/2. In the first step of a binary search this area
is divided in two. The quantile, which is placed at
the midpoint is calculated by Equation (3). Its confi-
dence interval is then calculated by Equation (4). In
this example there is a gap between the new and the
current confidence interval. Therefore, the new esti-
mated quantile is not adequate. An adequate quantile
must be located in the right half between 0.5 · lp/2

and lp/2. The binary search is continued in a second
step by dividing the area between 0.5 · lp/2 and lp/2 in
two. In this step the new confidence interval overlaps.
The binary search is continued until a quantile with a
non-overlapping and non-disjoint confidence interval
is found. The next binary search is started for the next
quantile. This is continued until it is not possible to
place another quantile in the unprocessed area, i.e. the
confidence interval is too wide. Note, all values of l
and u describe ranks and must be rounded, if neces-
sary.

Figure 2: Binary search in the rank domain to select
quantiles with non-overlapping and non-disjoint con-
fidence intervals.

The first two columns of Table 1 show the rounded
results of this method for p = 100 and p = 1000
independent replications with a confidence level of
1 − α = 0.9. The method selects seven quantiles for
p = 100 and 27 quantiles for p = 1000. The val-
ues in brackets show the upper bound l and the lower
bound u. These two values are ranks in the ordered
sequence and define the confidence interval based on
ε′q (see Equation (4)).

Equ. (4) Inequ. (5)
p = 100 p = 1000 p = 100 p = 1000
q (l;u) q (l;u) q (q ± εq) q (q ± εq)

.003 ( 0;.006)
.010 ( 5; 16) .012 (.006;.018)
.024 ( 16; 32) .026 (.018;.034)
.042 ( 32; 53) .045 (.034;.056)

.08 ( 3;13) .066 ( 53; 79) .09 (.04;.13) .069 (.056;.082)
.094 ( 79;110) .098 (.082;.113)
.127 (110;145) .131 (.113;.148)

.19 (13;26) .164 (145;184) .20 (.13;.26) .167 (.148;.187)
.205 (184;226) .208 (.187;.230)
.250 (227;273) .252 (.230;.274)

.34 (26;42) .297 (273;321) .34 (.26;.42) .298 (.274;.322)
.346 (321;371) .346 (.322;.371)
.396 (371;422) .397 (.371;.422)
.448 (422;474) .448 (.422;.474)

.5 (42;59) .5 (474;527) .5 (.42;.58) .5 (.474;.526)
.553 (527;579) .552 (.526;.578)
.604 (579;630) .603 (.578;.629)
.655 (630;680) .653 (.629;.678)

.67 (59;75) .704 (680;728) .66 (.58;.74) .702 (.678;.726)
.751 (729;774) .748 (.726;.771)
.795 (774;817) .792 (.771;.813)

.81 (75;88) .836 (817;856) .80 (.74;.87) .833 (.813;.852)
.873 (856;891) .869 (.852;.887)
.906 (891;922) .902 (.887;.918)

.93 (88;97) .935 (922;948) .91 (.87;.96) .931 (.918;.944)
.958 (948;969) .955 (.944;.966)
.977 (969;985) .974 (.966;.982)
.990 (985;996) .988 (.982;.994)

.997 (.994; 1)

Table 1: Selected quantiles chosen by Equation (4)
and Inequality (5) with 1− α = 0.9, for p = 100 and
p = 1000, respectively.

Probability Domain

The second method we investigate is based on In-
equality (5). Again, the starting point is the 0.5-
quantile and the method searches for more quantiles
in the directions below and above 0.5. In this case a
binary search is not needed, because the next quantile
can be calculated directly with the help of Inequal-
ity (5) and the following conditions:

qk < 0.5 : qk − εqk
= qk+1 + εqk+1 (6)

qk > 0.5 : qk + εqk
= qk+1 − εqk+1 (7)

qk denotes the kth selected quantile. The first condi-
tion is valid for the direction below the probability 0.5
and ensures that the upper bound of the confidence
interval of the current quantile is equal to the lower
bound of the previous confidence interval. The sec-
ond condition is valid for the direction above 0.5. It
ensures that the lower bound of the new confidence in-
terval is equal to the upper bound of the previous con-
fidence interval. In the following we focus on the first
condition, because the second condition can be treated
analogously. We can assume that qk is given or al-
ready calculated, because in the beginning we choose
q0 = 0.5. εqk

can be calculated by Inequality (5).
Therefore, we can use the substitution ak = qk − εqk

.
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Equation (6) can be transformed to:

ak = qk+1 + z1−α/2

√
qk+1(1− qk+1)

p

Eliminating the square root leads to

0 = q2
k+1b + qk+1ck + dk

with b = 1
z2
1−α/2

+ 1
p , ck = − 2ak

z2
1−α/2

− 1
p and

dk = a2
k

z2
1−α/2

. Finally, the new quantile qk+1 can be

calculated by

qk+1 =
−ck −

√
c2
k − 4bdk

2b
. (8)

Equation (8) is valid for quantiles below 0.5 and its
use is demonstrated in Figure 3. An equation for quan-
tiles above 0.5 can be derived analogously. Further-
more, the location of the selected quantiles is sym-
metric with the centre 0.5, except for errors due to
rounding of non integer values. The selection of more
quantiles is continued until the bounds of the proba-
bility domain [0, 1] are exceeded. With this approach
the probability domain is filled with non-overlapping
and non-disjoint confidence intervals.

Figure 3: Selection of quantiles with non-overlapping
and non-disjoint confidence intervals in the probabil-
ity domain.

The rounded results of the second method are shown
in the last two columns of Table 1. For p = 100 the
second method selects seven quantiles and for p =
1000 this method selects 29 quantiles. The values in
brackets show the confidence interval of the belonging
quantile in the probability domain.

Comparison

A comparison of the results of the first and second
method can be done by transforming the rank domain
to the probability domain, or vice versa: i.e. by divid-
ing the rank by p or multiplying the probability by p.
The results of the first and the second method are com-
parably accurate. However, the binary search of the
first method is complex compared to the direct calcu-
lation by Equation (8) in the second method. Further-
more, the calculation of

(
p
j

)
in Equation (4) involves

the handling of very small and very large values. This
might lead to problems in computer calculations and
rounding errors. Therefore, we recommend the sec-
ond method. All the examples in subsequent sections
use quantiles selected by the second method.

EXAMPLES

In the previous section we described how to se-
lect a number of quantiles. In this section we use
these quantiles to investigate three stochastic pro-
cesses (see Figure 4) with known statistic properties,
as in [Bause and Eickhoff, 2003]. This is followed by
an investigation of the time evolution of quantiles of
more complex models (see Figures 5, 6, 7 and 8).
These investigations show that the transient behaviour
of quantiles is a very intuitive way to depict the tran-
sient behaviour of a given process.

In all our simulations we used the random number
generator described in [L’Ecuyer et al., 2002]. This
generator allows the choice of many substreams,
making it suitable for multiple independent replica-
tions. In all experiments demonstrated in this sec-
tion we used p = 1000 replications and the se-
lection of several quantiles within the probability
domain as described in the previous section. In
[Eickhoff et al., 2005] some experiments are done
with p = {50, 100, 500} independent replications
leading to a smaller number of estimated quantiles.

An ARMA Process

Autoregressive moving average (ARMA) processes
are commonly used in time series analyses. They are
a class of stochastic processes with well known statis-
tical properties. To validate our method of transient
quantile estimation we use an ARMA(5, 5) process
which is defined by

Xi = 1 + εi +
5∑

k=1

1
2k

(Xi−k + εi−k), k ≥ 0

with the starting condition X−5 = X−4 = X−3 =
X−2 = X−1 = 100. {εi}∞i=1 is an independent Gaus-
sian white noise process ([Hamilton, 1994]). There-
fore, the process is normally distributed for any i with
a transient mean and variance. The expected value
of this process for large i is E [X∞] = 32 (see the
dashed line in Figure 4(a)). This process is highly
autocorrelated, because its current value depends on
five previous values. The process is expected to con-
verge from the initial value 100 to 32. The estimates of
the transient quantiles are shown in Figure 4(a). The
simulation of the ARMA process behaves exactly as
expected. Additionally, we get an impression of the
speed of the convergence, which is high in the begin-
ning and is increasing with decreasing i.

A Periodic Process

The second examined stochastic process is periodic
and is defined by

Xi = a · sin(ωi) + εi
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(a) ARMA Process

(b) Periodic Process

(c) Exponential Process

Figure 4: Quantiles of time-dependent processes.

The cycle length of the sine oscillation is given by
T = 2π

ω with the amplitude a. We choose T = 50
and a = 1. Again {εi}∞i=1 is an independent Gaus-
sian white noise process. The estimates of quantiles
are depicted in Figure 4(b). The periodic behaviour is
visible for every depicted quantile.

An Exponential Process

In the previous example we estimated quantiles of nor-
mally distributed processes. In this example we chose
a process which is governed by an exponential distri-
bution (see e.g. [Law and Kelton, 2000]). It is defined

by
Xi = ε′i · b(1− e(i

ln(0.05)
l )).

The process {ε′i}∞i=1 is similar to the independent
Gaussian white noise process, but its distribution is
exponential with β = 1. The parameter b stretches
the distribution. The part in brackets of the formula
causes the process to slowly converge towards its
marginal distribution. This is depicted in Figure 4(c).
Both the convergence and the exponential character of
the distribution is clearly apparent.

In general, the quantiles of areas with lower proba-
bility seem to fluctuate more than the ones of high
probability. In Figure 4(a) and Figure 4(b) this can
be observed when comparing the bounds 0 and 1
with the center (around 0.5) of the distribution. Be-
cause the distribution in Figure 4(c) is not symmet-
rical, the quantiles at bound 1 fluctuate more than
the ones at bound 0. These examples show, that
our approach of depicting quantiles is suitable for
both symmetrical and asymmetrical distributions, as
well as for converging and non converging processes.
[Eickhoff et al., 2005] recommends the use of at least
50 independent replications to ensure a set of at least
5 different quantiles.

A Bounded Random Walk

The next process is based on a random walk X ′
i , which

is defined by

X ′
i =

{
X ′

i−1 + 1, with probability 0.5,
X ′

i−1 − 1, with probability 0.5,

with the initial state X ′
0 = 50. The process X ′

i can
take any value between −∞ and +∞. The final pro-
cess Xi is bounded, so that its range is the interval
[0, 100]:

Xi =

 0, if X ′
i < 0,

X ′
i , if 0 ≤ X ′

i ≤ 100,
100, if X ′

i > 100.

A similar process was used in
[Bause and Beilner, 1999]. Because Xi is bounded a
marginal distribution for i = ∞ exists.

The peculiarity of this process is that the expected
value E [Xi] = 50 is constant over i, whereas all quan-
tiles other than the median are not constant and con-
verge to the thresholds 0 and 100, see Figure 5(a) and
5(b). FXi(x) is very steep around x = 50 for small i,
see Figure 5(c). After a long simulation time the shape
of FXi

(x) is completely different. For large i it is very
flat around x = 50, see Figure 5(d). However, the ex-
pected value E [Xi] is constant for all i. Analysis of
mean values only would show a constant behaviour,
even though this process is transient and the cumula-
tive distribution is slowly converging to its marginal
distribution.
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(a) short run behaviour of quantiles (b) long run behaviour of quantiles

(c) F̂X50 : ECDF at index 50 (d) F̂X50000 : ECDF at index 50000

Figure 5: Quantiles and ECDFs of a bounded random walk.

A Periodic Queueing Model

A periodic behaviour can be introduced into a queue-
ing model in two ways. On the one hand, the system
arrivals could be governed by an oscillating function.
On the other hand, the service process could be in-
fluenced by an oscillating function. In this example
we choose a single server system with an unbounded
queue. The interarrival process is governed by a Pois-
son distribution. The service process is determinis-
tic and periodic. We denote this queueing process as
M/Dperiodic/1/∞. The service time µi of the ith cus-
tomer is defined by:

µi = a · sin(ωi) + µ

The average service time µ is a positive value. a is the
amplitude, with 0 ≤ a ≤ µ, to avoid negative values
of the service time µi. The cycle length T = 2π

ω of
the sine oscillation is also a positive value.

In our experiments we choose µ =
{0.5, 0.75, 0.9, 0.99}, a = 0.5, T = 40 and the
average interarrival time is 1.0. We observed the
response time, i.e. the time spend in queue plus the
time spend in service, of consecutive customers. The
results are depicted in Figure 6. (Note the different
y-scale of each plot.) The periodic influence is clearly
evident. Furthermore, the influence is different for
each quantile. The peaks of higher quantiles are

shifted by about T/4, whereas the peaks of lower
quantiles stay close to the original periodic behaviour.
Higher quantiles describe long queue length. There-
fore, it can be assumed that a long queue damps the
effect of the periodic behaviour. The peaks become
higher and wider for an increasing µ so that they grow
together. (Compare Figure 6(a) and Figure 6(d).)

A Chaotic Queueing Model

Chaotic systems are nonlinear, aperiodic and depend
heavily on initial conditions. Usually they have a con-
trol parameter, which can cause the chaos to appear or
disappear. The logistic equation

µi = aµi−1(1− µi−1) (9)

shows chaotic behaviour if the initial state µ0 is not a
fixed point of Equation (9). This would lead to a con-
stant µi. a is a positive constant with 0 < a ≤ 4.
For some settings of a the process µi converges to
one value. For other settings of a it jumps between
a certain number of values after an initial phase. And
for some settings of a the process µi shows no pat-
tern at all. Small changes of a can lead to completely
different behaviour of µi. For a detailed discussion
on Equation (9) see [Sprott, 2003]. If the logistic
equation is implicitly hidden in a model, it is very
hard to get an insight into its behaviour by analyti-

I.J. of SIMULATION Vol. 7 No 6 51 ISSN 1473-804x online, 1473-8031 print



M. EICKHOFF et al.: ANALYSIS OF THE TIME EVOLUTION

(a) Average Service Time µ = 0.5 (b) Average Service Time µ = 0.75

(c) Average Service Time µ = 0.9 (d) Average Service Time µ = 0.99

Figure 6: Quantiles of the response time of the M/Dperiodic/1/∞ system.

cal methods. We choose the logistic equation to de-
fine the service time µi of the ith customer in a single
server system. This explicitly introduces a chaotic be-
haviour and we incorporate it in the queueing model
M/Dlogistic/1/∞. A process of this kind is analyti-
cally tractable only if the exact value of a is known.

In our experiments we observed the response time of
consecutive customers. The average interarrival time
of the Poisson process is 1.0. We set a = {2, 1 +√

8, 1 +
√

8 + 0.01, 4} and µ0 = 0.3. For a = 2
(see Figure 7(a)) the queueing model shows a short
warm up period. After this, µi is constant, and there-
fore, the estimated transient quantiles seem to be sta-
ble. The point a = 1 +

√
8 is the onset of a window,

in which µi jumps between three values. This is de-
picted in Figure 7(c). Figure 7(b) does not show this
behaviour, even though the value of a is very simi-
lar. For a = 4 the depiction of the quantiles does not
show any pattern. Furthermore, the time evolution of
higher quantiles is not always exactly similar to those
of lower quantiles. For example between the 40th and
the 45th customer in Figure 7(d) the lowest quantile
is on a constant high level but higher quantiles are in-
creasing.

M/M/1/10 versus M/P/1/10

In the experiments described in this section we com-
pare the M/M/1/10 queue with the M/P/1/10
queue. In the second queue the service process X(P )

is governed by the Pareto distribution

FX(P )(x) = 1− x−α, x > 0.

To ensure that the first and the second moment of the
Pareto distribution exists, we choose α = 3. There-
fore, E

[
X(P )

]
= 1.5 and Var

[
X(P )

]
= 0.75. To

obtain comparable results, we choose the service pro-
cess X(M) of the M/M/1/10 queue with the same
expected value E

[
X(M)

]
= 1.5. The variance is in

this case Var
[
X(M)

]
= 2.25. In both queueing mod-

els the average interarrival time is 1.0 and the max-
imum permitted queue length is nine customers plus
one customer in service. Customers which arrive at a
completely filled queue are rejected. Both queues are
stable because their queue length is bounded.

We observed the response times in the two models for
accepted customers. The results of our transient quan-
tile estimation are shown in Figure 8. The quantiles
converge to their steady state values. By comparing
Figure 8(a) and Figure 8(c) it becomes obvious, that
the probability distribution of the M/P/1/10 model
is more centered around its expected value than the
steady state distribution of the M/M/1/10 model.
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(a) a = 2, see Equation (9) (b) a = 1 +
√

8, see Equation (9)

(c) a = 1 +
√

8 + 0.01, see Equation (9) (d) a = 4, see Equation (9)

Figure 7: Quantiles of the response time of the M/Dlogistic/1/∞ system.

This is due to its smaller variance: Var
[
X(P )

]
<

Var
[
X(M)

]
. The highest quantile of the M/P/1/10

model fluctuates more than the highest quantile of the
M/M/1/10 model. Due to our choice of α, higher
moments of the Pareto distribution do not exist, so this
may cause the higher fluctuation of higher quantiles.
In an additional experiment we started the replications
with a completely filled queue. Theses results are plot-
ted in Figure 8(b) and Figure 8(d). The 10 initial cus-
tomers engender a non-monotonic convergence of the
quantiles. For more information about quantile esti-
mation of a M/P/1 model see [Fischer et al., 2001].

CONCLUSIONS

We have described two methods of selecting several
quantiles with non-overlapping and non-disjoint con-
fidence intervals. The first method operates in the rank
domain, the second in the probability domain. Both
methods delivered similar results. We recommend the
second method based on Inequality (5) because of its
lower complexity.

The use of multiple independent replications enables
analysis of the evolution of several quantiles over
time. Such analysis appears to be suitable for study-
ing performance of a variety of different station-
ary, non-stationary and transient processes. Further-

more, this approach can be used in steady state sim-
ulation, as well as in finite-horizon simulation. In
[Eickhoff et al., 2005] the use of at least 50 indepen-
dent replications is recommended to make sure that
the selected set of quantiles is reasonably large. In
finite-horizon simulation the replications do not need
to be processed in parallel. Therefore, a large number
of replications, e.g. p = 1000, is feasible.

Our examples show that the analysis of quantiles can
provide a deeper insight into the analyzed process than
its mean value analysis. Drawing conclusions entirely
based on mean value analysis is not recommended
for complex models. If analytical investigations of
a model fail, transient quantile estimation may be a
good choice to obtain a deeper insight.
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