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KEYWORDS described as a phase which is "relatively free of the influence
of initial conditions” [Fishman, 2001] or by the statement that

Sequential Steady State Simulation, Output Analysis, Trunca- X;, X;,1, ... "will have approximately the same (marginal) dis-

tion Point Detection, Arbitrary Performance Measures tribution” [Law and Kelton, 2000]. In practise there will often
be an observation indéxsuch that

ABSTRACT Vi >1: F;(z|I) ~ F(x) 1)

In steady state simulation the output data collected during the is valid, unless the processX;}52, is statistically unstable.
transient phase often causes a bias in estimators of steady stateOf coursel should be finite, and should be the minimum of
performance measures. Common advice is to discard data col- all indices, for which Equation (1) holds. Even though the
lected during this transient phase. Finding an appropriate trun- estimation of F(z) is the ultimate goal of steady state simu-
cation point is a well-known and still not completely solved lation, the expected value of the steady state random variable
problem. In this paper we propose an improved algorithm for E[X] = lim;_.., E[X;] is often the only measure of interest.
the determination of the truncation point for the output data In this situation it is a generally accepted approach to replace
sequence when its probability distribution reaches (approxi- Equation (1) by:

mately) steady state. The required run time of this algorithm

is substantially improved without reducing the accuracy of the Vj > 1: E[X;] ~ E[X] )

rgs_ults. Becau;e th.|s a.llgo-nthm IS t.)aSEd on compa.rlsons-of M i [Lee et al., 2000] it is shown that in the case dffdM /1 /o0
pirical cumulative distribution functions, the truncation point is . . . .
system, the use of Equation (2) works even in quantile estima-

valid for an arbitrary steady state performance measure, such as_. .
y y P tion. In general, however, the convergence of the mean is only

the mean, variance or quantiles. o . ) .

a necessary condition for stationarity, and not a sufficient pre-

liminary (see [Welch, 1983]). Therefore, Equation (1) can be
INTRODUCTION applied in analysis of mean, variance, quantiles, or even rare

event estimation, and Equation (2) should be used in mean value
In discrete-event simulation the sequence of output data repre- analysis only. In [Ghorbani, 2004] experimental investigations
sents a realization of a stochastic procgs§}2°,. The con- of methods based on Equation (2) are reported. Finding a trun-
secutive observations of this process are usually correlated and cation point on the basis of Equation (1) is not straightforward.
influenced by the initial staté of the system chosen by the It is therefore not very surprising, that the most common meth-

analyst. LetF;(z|I) := Pr[X; < z|I] denote the cumula- ods for detection of the truncation point are based on Equation
tive distribution function ofX;. Assuming an ergodic system, (2) (see [Pawlikowski, 1990]) or on a visual inspection of the
F;(z|I) is converging toward$'(z) = lim;_,~ F;(z|I) which output data (see e.g. [Welch, 1983]). Completely algorithmic

is called the marginal cumulative distribution function of the methods only give proper results under special conditions (see

procesy X }32, in steady state. The primary concern of steady [Gafarian et al., 1978]) and are mostly based on one long sim-

state simulation is to determine this distribution or its specific ulation run. Nearly all methods use Equation (2), although the

measures, such as e.g. the mean value. steady state phase should in general be defined by the conver-
In general the influence df is significant in the beginning gence ofF; (x|I) towards the steady state distributiliz).

and decreases with increasing model time. If the interest is  In the MRIP scenario (multiple replications in parallel, see

focused on the steady state behavior of the system, this ini- [Pawlikowski et al., 1994]) it is possible to collect a random

tialization bias is obviously undesirable. A common way to sample ofp independent and identical distributed realizations

reduce the influence af is to truncate the “most” influenced  of each.X;, one from each replication. Let;; be thejth

part of the stochastic output proce&s,..., X; ;. Follow- observation in theith replication, withl < ¢ < p and

ing this strategy the problem is to find an appropriate trunca- 1 < j < oo. Therefore, the empirical (marginal) cumula-

tion point!. In the literature the steady state phdse; }52, is tive distribution functionF};(x|I) based on the order statistic



of x1;,...,x,; is an estimate of; (z|I). This strategy requires
a synchronization of the parallel replications so that the same
number of observations is taken from each replication. Note,

that this can lead to idle processors in an inhomogeneous com-

puter network. The use of independent replications was consid-
ered in the case of mean value estimation in [Whitt, 1991] and
[Alexopoulos and Goldsman, 2004]. The main source of error
using independent replications is the initialization bias. If this

source of error is eliminated, the estimates of independent repli-

by the Kolmogorov-Smirnov two-sample test (KS-test). If the
null hypothesis of equality is accepted, the operatofresp.

the KS-test) resulttrue. The procedurebserve()collects one
observation of each replication and the proceduriéorm(a,b)
delivers a uniform distributed integer random number between
a andb used as index. The variablgoints atX; as the candi-
date for the truncation point, at the end of the algorithm it is the
valid truncation point. The variablbe represents the number of
observations collected of each replication so far.

cations are more accurate than e.g. ones obtained by means of

methods based on batching. In [Eickhoff, 2002] an approach

Listing 1: Pseudo code of the improved algorithm

to reduce the initialization bias is proposed which is based o
Equation (1) and uses the MRIP scenario. Its performance
is examined and improved in [Bause and Eickhoff, 2002] and
[Bause and Eickhoff, 2003]. An application of this approach
is demonstrated in [Arns et al., 2003]. The results show thab
this approach is more reliable than methods which are based
on Equation (2), especially if the transient behaviour is more
complicated. Unfortunately, its computing time is quite large,
possibly too excessive, as in many applications the computiig
time is as important as accuracy.

In the next sections an algorithm is described, which is based
on Equation (1). In comparison to the algorithm described in
[Bause and Eickhoff, 2003], the required run time of the neW>5
algorithm is substantially improved without reducing the ac-

curacy of the results. This is examined in a later section by }

int 1:=0; int n:=0; int r:=10; {s;}/_; :=0;
bool NoTestFailed:false;
while (—=NoTestFailed]
n:=n+1;
observe (zin}t_;);
{Si}le = {Si}€:1 + {yin}f:l ;
if (0#nmod(r+1)) continue;
l:=1+1;
{Si}ﬁ;l = {Sz’}f:1 - {yiz}le ;
NoTestFailed:#rue;
it (~({yat?_y ~ {s:)7_,/(n 1))
NoTestFailed:false;
for (int k:=1k<r;k:=k+1){
if (-NoTestFailed)break;
int w:=uniform(k+1,l(k+1));
if (ﬁ({yil}§:1 ~ {ym}le))
NoTestFailed:false;

comparing the worst-case run time and the accuracy of both al-
gorithms. In this paper only sequential methods and algorithms

The most time consuming factor of the algorithm described

which are based on a dynamic set of data are considered. There-in [Bause and Eickhoff, 2003] is the increasing number of KS-

fore, the output analysis is performed online and guides the sim-
ulation experiment until estimates are statistically accurate.

IMPROVED ALGORITHM

The basic idea of the algorithm is given by Equation (1). The
aim is to determine the first indéxrom which on all following
probability distribution functions are (approximately) identical.
Obviously the time horizon of every simulation experiment is
limited. Therefore it is not possible to access "all” successive
probability distribution functions. Accessible is only the ob-

served part of the steady state phase. Itis strongly necessary that{si}izl_ e _
& possible periodic behaviour could be overlooked and an un-

this observed part of the steady state phase is reasonably large t
avoid the determination of a misleading truncation point. There-

fore the algorithm selects the size of the observed part of the
steady state as a (constant) factasf the size of the transient

period, i.e. the size of the observed part of the steady state phase

is alwaysr-times larger than the so far selected transient phase.
During each step of the algorithm the indeis increased by

one. To assure the proper ratio between the two phases duringSamPle{zi}

each step: + 1 new observation indices have to be accessed
and included in analysis. For details on the basic idea of this
approach see [Bause and Eickhoff, 2002]

Listing 1 shows a pseudo code of the improved algorithm,

where for convenience some special notation is used. Let the se-

quence{y;; }¥_, be the order statistic of observatiops;; }7_;.
Using the operators +, -, / and := in conjunction with sequences

tests executed during each step of the algorithm. The improved
algorithm described in Listing 1 avoids these tests by using
the calculated sequends; }”_, which is an estimate of'(z)
based on the latest observations during each step of the algo-
rithm. The sequenceés;}”_; is the sum of all order statistics
which are not part of the transient period. New observations
are added whereas observations of the transient period are sub-
tracted from{s;}?_, (see lines 5 and 8). Dividing each com-
ponent of{s; }*_, by the number of addends results in an esti-
mate of F(z). This sequence is compared with the order statis-
tic of the actual test sampler;;}7_, (see line 10). Because
P__is calculated over observations at different model times,

reliable estimate of the truncation point could be accepted (cf.
[Bause and Eickhoff, 2003]). Therefore additiomalandomly
chosen sequences are used to avoid this trap. The observed part
of the steady state phase is divided imtequally sized inter-
vals. Each interval contains one randomly chosen sequence. In
a loop all of these sequences are compared with the actual test
P | (seelines 12to 17). If the assumption of equal-
ity is rejected by the KS-test fdrs; }2_, , or any of the randomly
chosen test samples, the truncation péiist not adequate and
more steps of the algorithm have to be performed. In contrary
to the previous version of this algorithm, the number of needed
KS-tests in each step is maximumt 1.

WORST CASE TIME COMPLEXITY

(see lines 0, 5, 8, 10 and 15) means to use these operators on
each component of a given sequence separately. The operatorin [Bause and Eickhoff, 2003] it is demonstrated experimen-
~ in line 10 and 15 implements Equation (1) and is realized tally, having considered a number of different kinds of transient



behaviour, that the previous version of the algorithm described
in Listing 1 is very accurate and has therefore a great advan-
tage over some other commonly used methods for truncation
point estimation. But the price for its accuracy is the length
of its run time which isO(n?plog(p)). This run time is pos-
sibly too large for practical implementations. In this section it
will be shown that the algorithm described in the previous sec-
tion is a substantial improvement, because its run time is only
O(nplog(p)), without significant loss of accuracy, in conjunc-
tion with any kind of transient behaviour.

As before, letp denote the number of replications andhe
number of observations in each single replication. Note, that
at the end of the algorithm is a multiple ofr + 1. The total
number of observations js:. Assume, that all basic arithmetic
operations are i (1) (cf. [Cormen et al., 1994]). In the fol-
lowing the running times of algorithms are considered from the
point of view of their worst-case time complexity.

Theorem
The worst case running time of the algorithm described in List-
ing 1isO(nplog(p)).

Proof: Only KS-tests with random samples of sizare
performed. The basis of the KS-test are two sorted random
samples. Sorting can be done @plog(p)). To determine

PERFORMANCE

To compare the accuracy of both versions of the algorithm the
same artificial processes as in [Bause and Eickhoff, 2003] are
used, except the starting condition of the ARMA process is
changed, to create a more unusual initial state. The output
data of these artificial processes is used to show the perfor-
mance of the algorithm on many different kinds of transient
behaviour. Let{e;}22; denote an independent Gaussian white
noise process (see [Hamilton, 1994]). In all experiments we
usedp = 100, » = 10 and ana-level of 0.05 for the critical
value of the KS-test. For details on this parameters the reader is
referred to [Bause and Eickhoff, 2002]. Further more, in all of
the performed experiments the pseudo random number genera-
tor described in [L'Ecuyer et al., 2002] is used. This generator
is suitable for many parallel replications, because its period is
reasonably large and can be divided into many substreams.

linear transient mean

Y(A) _ {et+$tglc
=

€t

Process A:

ift <,
else.

with x = 10, [ = 100. This process can be regarded as the
easiest case, because all performance measures are influenced
by the initial state and show a transient behaviour, especially the

the maximum distance in the compared samples a pointer has mean and all quantiles. At a well defined indete influence
to be shifted through each sorted random sample. This can ©f the initial condition disappears completely.

be done in2p steps which leads t®(p). To accept or re-
ject the null hypothesis, the determined maximum difference
has to be compared with a tabulated critical value. This can
be done inO(1). Therefore, the run time of one KS-test is

O(plog(p)) + O(p) + O(1) = O(plog(p)).

The run time of a single execution of lines 3 and &Jél)
and of lines 4 and 5 it i®(p). Because the while-loop in line 2
is executed times before the algorithm stops, the run time of
this part of the algorithm i®(np).

A single execution of lines 7, 9 and 11 can be don&in);
a single execution of line 8 can be don&lifip); to execute line
10 aruntime ofD(plog(p)) is needed, because a KS-test has to
be performed. Because of the condition in line 6 this part of the
algorithm is executed only?+ times. Therefore, the run time
of this part of the algorithm is’ - O(plog(p)) which leads to
O(nplog(p)) because is a constant parameter.

A single execution of lines 12, 13, 14 and 16 needs only a
minor run time ofO(1). The KS-test in line 15 can be done
in O(plog(p)). The for-loop is executed at maximurtimes,
therefore, the run time of one complete for-loop in each step of
the algorithm isr - O(plog(p)). All in all %5 for-loops have
to be performed. Therefore, the run time of this part of the

algorithmisn - = - O(plog(p)) which leads ta)(nplog(p)).

Combining all results, the run time of the algorithm is
O(np) + O(nplog(p)) + O(nplog(p)) = O(nplog(p)) M
Becausep could be considered as a constant parameter and
usuallyp << n holds, the run time could be described®yn).
This run time is linear and highly efficient, because each obser-
vation has to be processed at least once.

linear transient variance

€¢ *
€t

with =z = 10, [ = 100. The probability distribution function of

this process has a transient behaviour, which is not visible for
Equation (2) because the mean (resp. the median) is constant
right from the beginning. Therefore, in this case Equation (2)
is not suitable for an estimation of any other measure than the
mean.

Process B:

(x—t=h) ift <,
else

Process C: exponential transient mean

Yt(c) = +x- e(tw)

with z = 10, [ = 100. In this case every performance measure

has a transient behaviour. However, the influence of the ini-
tial state is disappearing exponentially. When regarding a finite
simulation horizon, the influence never disappears completely.
The definition of this process implies that at indethe impact

of the influence of the initial state is reducedtd of its impact

att =0.

Process D: ARMA(5,5)
5
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Figure 1: The number of rejections of the null hypothesis standardized by the number of all performed KS-tests. The values are plott
over model time, each peak represents one step of the algorithms.

with Yf?) = Yff) = Yf? = Yf’;) = Yf’lj) = 100. Each with z = 10, [ = 100, ¢ = 0.01. This process is governed by

value of this process depends on the 5 previous values. There-two different transient behaviours. The first one is obvious and

fore, the observations of this process are highly autocorrelated. is the same as in Process A. The second transient behaviour is

A theoretical investigation shows that the expected value of this more hidden and results in a non-ergodic behaviour. The pit-

process in steady stateEiYO(cm] — 32. The initial state has no fall concerning output analysis of this process is to overlook the

influence on this expected value. second transient behaviour. This is especially likely when per-
forming a visual inspection.

The processes A to D converge towards a steady state distri-
bution. Therefore Equation (1) can be used to estimate the be-
ginning of the steady state phase. To obtain a statistically accu-
Y,5<E) = ¢ + b sin(wt) rate result simulation experiments with the algorithm described
. o . , _ in [Bause and Eickhoff, 2003] and the algorithm of Listing 1 are
withb = 1, T = > = 50. The transient behaviour of this performed 20 times. The average of all 20 results is listed in Ta-

process Is governgd .by asine oscillation .and IS not CONVErgINg 14 1 with the halfwidth of its confidence interval and its relative
to a steady state distribution at all. A possible pitfall concerning statistical error

output analysis of this process is that a batched mean seems to
converge, if the batch size is equal to the period of the oscilla-

Process E: periodic

g [ using 20 runs][  previous algorithm | improved algorithm |
tion. ProcessA || 98.00 £ 0.43 (0.4%) | 97.25+0.57 (0.6%)
Process B 86.20 & 1.01 (1.2%) 82.20 & 1.87 (2.3%)
) Process C || 103.05+1.76 (1.7%) | 99.25 + 1.81 (1.8%)
Process F: non-ergodic Process D || 190.25 £ 6.53 (3.4%) | 185.00 £ 6.55 (3.5%)

‘ run time H O(n?plog(p)) ‘ O(nplog(p)) ‘

Table 1: The average truncation points and their confidence in-

v(F) _ {et(ct +1) +x—t7 ift<l,
=
tervals. Each result is based on 20 simulation experiments.

e(ct + 1) else.
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Figure 2: Standardized statistics produced by the KS-tests executed in line 10 an line 15 respectively (see Listing 1) when applied
Process E. The null hypothesis is accepted when the standardized statistic ig below

The halfwidths of the confidence intervals are in all our ex- the previous algorithm.
periments smaller than five percent of the mean value after  Furthermore, Process E is a good example to demonstrate that
fewer than 20 simulation experiments. This shows that both al- atruncation point estimation exclusively baseden}?_, is not
gorithms deliver a robust estimate with a small variance. Even sufficient. The statistics produced by the KS-test are plotted in
though the results of both algorithms are comparable, the al- Figure 2. Figure 2(a) shows the results of the comparisons be-
gorithm described in Listing 1 tends to estimate the truncation tween{z;}?_, and{s;}”_; performed in line 10 of Listing 1.
point a bit earlier. This shows that the fewer KS-tests of this Figure 2(b) shows the maximum statistics of all KS-tests per-
algorithm are weaker than the large number of KS-tests in the formed in line 15 of Listing 1 during the for-loop. In the second
previous version of the algorithm, which cause the longer run case, the maximum statistics of alkomparisons are plotted by
time. disregarding the condition from line 13. To achieve comparabil-

The processes E and F do not converge towards a steady statdty, the statistics are standardized by appropriate critical values
distribution, and so there is no steady state phase at all. There-0f the KS-test. A standardized statistic belowneans that the
fore, both algorithms should not return a truncation point. To corresponding null hypothesis was accepted by the KS-test.
check the accuracy in these cases each step of the algorithms Figure 2(a) shows a periodical pattern of acceptance of the
is observed by plotting the number of rejections of the null hy- null hypothesis. The reason for this is, that; };_, is gov-
pothesis (see Figure 1). The rejections should be on a high level €rned by the periodical behaviour of Process E. The situation is
so that Equation (1) will not be true for any tested valué do different in the case ofs;};_, since then many random sam-
make the number of rejections comparable, they are standard- ples of different model times are taken into account. Therefore,
ized by the number of all performed KS-tests. Therefore, the {si};—; cannot reflect the periodical behaviour and represents
value1 means that all KS-tests reject the null hypothesis, and the average test sample over many periods of the sine oscilla-
the value0 means that all KS-tests accept the null hypothesis. tion. When Process E is at an extreme value of the sine os-
To obtain results depicted in Figures 1(b), 1(d) and 2(b) the con- cillation, the KS-test detects the difference betwden };_,
dition in line 13 of Listing 1 is ignored, to force the execution ~and{s;};_,. If Process E is at a zero point of the sine oscilla-
of all » + 1 KS-tests to obtain continuous plots. tion, the KS-test is not able to recognize a difference between

The plots in Figure 1(a) and 1(c), with the results for the origi- {wa}ti_, and{s;};_,. These results in the same problem as
nal algorithm described in [Bause and Eickhoff, 2003] are quite shown for the method of Welch (see [Bause anq Eickhoff, 2003]
smooth, because a large number of KS-tests are used to check@nd [Welch, 1983]). However, the KS-tests with the randomly
Equation (1). Additionally these plots show that the KS-tests of S€lected samples make sure that the improved algorithm works
the previous algorithm work reliably, because of the large num- "€liably (see Figure 2(b)).
ber of rejected null hypotheses when analyzing Process E and
F. Note, this algorithm gives an estimated length of the initial TRANSIENT BEHAVIOUR OF THE M/M/1 QUEUE
transient phase if the number of rejections is below a certain
threshold, which is usually set &105. The plots in Figure 1(b) In [Kelton and Law, 1985] it is pointed out that true steady state
and 1(d), for the modified algorithm, are not as smooth, because behaviour of a M/M/1 queueing system is very difficult to ob-
the number of executed KS-tests is much smaller. However, the serve by simulation experiments. The reason is that the depen-
number of rejections of the null hypothesis is high in both cases. dence of the output data on the initial state can last very long. In
Note, that the improved algorithm accepts an estimate only if all [Jain, 1991] the most important properties of an M/M/1 queue
KS-test accept the null hypothesis. Therefore the improved al- are summarized. Only the mean arrival ratand the service
gorithm works in the case of on Process E and F as reliably as ratep is necessary to analyze the steady state behaviour of the
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Figure 3: The estimated truncation points in response time anal-
ysis obtained according to Listing 1 and Condition (3).

M/M/1 queue. The traffic intensity is given by = 2. The

’n

stability condition isp < 1. Let N denote the number of jobs

in the system in steady state, in queue and in service. If the sta-

bility condition holds, the mean number of jobs in the system
in steady state i&[N] = 2. Let D denote the response time
(or turnaround time) of the system in steady state, including the

response time of thgth job leaving the system in thigh repli-
cation. When using the MRIP scenario, the mean response time
of the jth job, E[D;], can be estimated by

The aim of the experiments reported here is to assess the re-
sults produced by the algorithm described in Listing 1 when
analyzing the M/M/1 queue. A comparison with the previously
published results of [Kelton and Law, 1985] is done. The au-
thors of that publication used the same condition as a measure of
convergence to steady state, as [Gafarian et al., 1978]. Namely:

©)

When analyzing the response timig j should not be smaller
than the initial number of jobs in the system. However, it should
be the minimum index for which this condition holds. This con-
dition is based on the estimated mean vallieép) and, there-
fore, implements Equation (2). Further more, this condition is
only applicable, if the expected steady state valudZab] is
known. Therefore, this rule has only theoretical importance and
cannot be applied in practise.

The primary aim in [Kelton and Law, 1985] was to use that
condition to assess the rate of convergence of the mean waiting
time in the queue in different queueing models to steady state.
Because of this, the results of the algorithm described in Listing
1 are not expected to be the same as those of Kelton and Law.

In all our experiments we sét = 1 so thatE[D] = E[N]
holds. The series of experiments are done for estimating the
truncation point of the M/M/1 queue with a constant traffic
intensity of p = {0.5;0.8;0.9} and an initial queue lengths
between0 and 30. In this experiments we set the parameter
r = 1000. This leads to a large ratio between the length of
the transient phase and the observed part of the steady state
phase when executing the modified truncation point detection
algorithm. For each initial value of the queue length the exper-
iment is repeated 100 times to estimate the average truncation
point and its confidence interval. In parallel to the algorithm de-
scribed in Listing 1, Condition (3) is being checked on the same
set of output data. We set= 0.05 for all experiments. The
analyzed measure is the response time.

The results are plotted in Figure 3 for= {0.5;0.8;0.9}.

The shapes of the curves obtained under Condition (3) are sim-
ilar to those obtained for the improved truncation algorithm. In
all cases they start on a higher level and drop down at the point,
where the initial queue length is (approximately) equab{dv]

resp. E[D]. After this point all curves rise again. This shows,
that the results of the improved algorithm conform the theory.

The convergence of the mean is a necessary condition for a
process being in the steady state phase. Therefore, a truncation
point chosen on the basis of the converging probability distri-
bution is expected to be equal or larger than a truncation point
chosen on the basis of the converging mean. However, in the
implementation of Equation (1) and Condition (3) two different
measures of convergence have been used, so the results are not
directly comparable. One can see that the estimated value of

|Dj(p) — E[D]| < - E[D]

time in queue and in service. Then, the mean response time in the truncation point depends not only on the convergence of the

steady state is given b§[D] = E[N]/\. Let D;; denote the

observed measure, but also the measure of closeness which in



Condition (3) is represented by a scalar vadpehile in the im-
plementation of Equation (1) the statistic of the KS-test is used.
The experiments with this M/M/1 queue show that the re-
sults of the algorithm described in Listing 1 conform to theory
and are comparable to the results of [Kelton and Law, 1985].
In contrast to the previously published results, all simulation
experiments were performed automatically without any a pri-

Before investigating the performance of the algorithm de-
scribed in Listing 1, it was uncertain, whether the obtained re-
sults would be accurate or not. Therefore, it was an additional
idea to perform a large number of KS-tests, as it is done in the
previous version of the algorithm, whenever thel KS-tests of
the new version of the algorithm do not recognize a difference.
This idea has been rejected because of two reasons. Firstly, the

ori knowledge about the steady state distribution or steady state results obtained for both versions of the algorithm are convinc-
mean values. Note, that the large number of experiments at high ingly close, see Table 1. Another reason for the rejection of
traffic intensities is only feasible because of the efficient running that idea was, that the worst case time complexity would still be

time of the improved algorithm.

LIMITS AND REJECTED IDEAS

Because Equation (1) uses an approximation the estimate of
the beginning of the steady state phase of Process A is always
smaller than the theoretically best value which is in this example
[ = 100. However, using the equality instead of an approxima-

O(n?plog(p)). In the worst case, the+ 1 KS-tests of the new
version of the algorithm would always accept the null hypoth-
esis and the large number of KS-tests of the previous version
of the algorithm would always reject the null hypothesis. In this
situation the worst case run time of the algorithm would be even
worse than in the previous version.

CONCLUSIONS

tion does not make sense in output processes such as Process C.

Using the equality instead of an approximation would lead to
an infinite value forl, because in Process C the influence of the
initial state disappears exponentially.
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Figure 4: Truncation point analysis of Process A. The quality of
estimates depends on the number of parallel replications.

Figure 4 depicts the results of simulation experiments for the
Process A executed with different numbers of parallel replica-
tions. These experiments were executed as described in previ-
ous sections, with 20 independent simulation experiments for
each plotted point. These results validate the assertion, that the
estimated length of the initial transient phase is always smaller

than its theoretically best value. Furthermore, another effect

can be observed. The values of the estimates decrease with de{Alexopoulos and Goldsman, 2004] Alexopoulos,

creasing numbers of parallel replications. Note, that the crit-
ical values of the KS-test are defined for very small sample
sizes, too. The realization of the approximation of Equation (1)
based on the KS-test gets weaker for smaller numbers of paral-
lel replications. Therefore, we recommend at least 30 parallel
replications, and if possible more than 50 parallel replications
should be used. This limit is valid for the algorithms described
in [Bause and Eickhoff, 2003] and in Listing 1.

We introduced an efficient algorithm for the estimation of the
length of the initial transient phase in the sense of probability
distribution; see Equation (1). The worst case time complex-
ity of this algorithm is limited byO(nplog(p)) and is, there-
fore, substantially faster than the previous version of the algo-
rithm (see [Bause and Eickhoff, 2003]). This improvement is
achieved without reducing the accuracy of the estimates. Its
performance has been experimentally assessed by conducting a
number of simulations of artificial output processes with a vari-
ety of different types of transient behaviour.

We also investigated the newly introduced algorithm in
M/M/1 queue simulation and compared them with previous re-
sults published in [Kelton and Law, 1985]. The results are as
expected and conform to theory.

In the introduction it is pointed out that a truncation point es-
timation based on Equation (1) can be used for many different
performance measures, such as mean values, variances, quan-
tiles or even rare-events. Equation (2) is in general only useful
in mean value analysis.

However, limits concerning Equation (1) are also discussed.
For Process A is demonstrated that this equation does not al-
ways leads to the theoretically best truncation point. This is
caused by the approximation used. Using the equality instead
of an approximation is no alternative, because this would lead
in some cases (e.g. Process C) to an infinite truncation point.
Equation (1) can be used to reduce the initialization bias dra-
matically, but it cannot be used to eliminate it completely.
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