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ABSTRACT

In steady state simulation the output data collected during the
transient phase often causes a bias in estimators of steady state
performance measures. Common advice is to discard data col-
lected during this transient phase. Finding an appropriate trun-
cation point is a well-known and still not completely solved
problem. In this paper we propose an improved algorithm for
the determination of the truncation point for the output data
sequence when its probability distribution reaches (approxi-
mately) steady state. The required run time of this algorithm
is substantially improved without reducing the accuracy of the
results. Because this algorithm is based on comparisons of em-
pirical cumulative distribution functions, the truncation point is
valid for an arbitrary steady state performance measure, such as
the mean, variance or quantiles.

INTRODUCTION

In discrete-event simulation the sequence of output data repre-
sents a realization of a stochastic process{Xj}∞j=1. The con-
secutive observations of this process are usually correlated and
influenced by the initial stateI of the system chosen by the
analyst. LetFj(x|I) := Pr[Xj ≤ x|I] denote the cumula-
tive distribution function ofXj . Assuming an ergodic system,
Fj(x|I) is converging towardsF (x) = limj→∞ Fj(x|I) which
is called the marginal cumulative distribution function of the
process{Xj}∞j=1 in steady state. The primary concern of steady
state simulation is to determine this distribution or its specific
measures, such as e.g. the mean value.

In general the influence ofI is significant in the beginning
and decreases with increasing model time. If the interest is
focused on the steady state behavior of the system, this ini-
tialization bias is obviously undesirable. A common way to
reduce the influence ofI is to truncate the “most” influenced
part of the stochastic output processX1, . . . , Xl−1. Follow-
ing this strategy the problem is to find an appropriate trunca-
tion point l. In the literature the steady state phase{Xj}∞j=l is

described as a phase which is ”relatively free of the influence
of initial conditions” [Fishman, 2001] or by the statement that
Xl, Xl+1, . . . ”will have approximately the same (marginal) dis-
tribution” [Law and Kelton, 2000]. In practise there will often
be an observation indexl, such that

∀j ≥ l : Fj(x|I) ≈ F (x) (1)

is valid, unless the process{Xj}∞j=1 is statistically unstable.
Of coursel should be finite, and should be the minimum of
all indices, for which Equation (1) holds. Even though the
estimation ofF (x) is the ultimate goal of steady state simu-
lation, the expected value of the steady state random variable
E[X] = limj→∞E[Xj ] is often the only measure of interest.
In this situation it is a generally accepted approach to replace
Equation (1) by:

∀j ≥ l : E[Xj ] ≈ E[X] (2)

In [Lee et al., 2000] it is shown that in the case of aM/M/1/∞
system, the use of Equation (2) works even in quantile estima-
tion. In general, however, the convergence of the mean is only
a necessary condition for stationarity, and not a sufficient pre-
liminary (see [Welch, 1983]). Therefore, Equation (1) can be
applied in analysis of mean, variance, quantiles, or even rare
event estimation, and Equation (2) should be used in mean value
analysis only. In [Ghorbani, 2004] experimental investigations
of methods based on Equation (2) are reported. Finding a trun-
cation point on the basis of Equation (1) is not straightforward.
It is therefore not very surprising, that the most common meth-
ods for detection of the truncation point are based on Equation
(2) (see [Pawlikowski, 1990]) or on a visual inspection of the
output data (see e.g. [Welch, 1983]). Completely algorithmic
methods only give proper results under special conditions (see
[Gafarian et al., 1978]) and are mostly based on one long sim-
ulation run. Nearly all methods use Equation (2), although the
steady state phase should in general be defined by the conver-
gence ofFj(x|I) towards the steady state distributionF (x).

In the MRIP scenario (multiple replications in parallel, see
[Pawlikowski et al., 1994]) it is possible to collect a random
sample ofp independent and identical distributed realizations
of eachXj , one from each replication. Letxij be thejth
observation in theith replication, with 1 ≤ i ≤ p and
1 ≤ j < ∞. Therefore, the empirical (marginal) cumula-
tive distribution functionF̃j(x|I) based on the order statistic



of x1j , . . . , xpj is an estimate ofFj(x|I). This strategy requires
a synchronization of the parallel replications so that the same
number of observations is taken from each replication. Note,
that this can lead to idle processors in an inhomogeneous com-
puter network. The use of independent replications was consid-
ered in the case of mean value estimation in [Whitt, 1991] and
[Alexopoulos and Goldsman, 2004]. The main source of error
using independent replications is the initialization bias. If this
source of error is eliminated, the estimates of independent repli-
cations are more accurate than e.g. ones obtained by means of
methods based on batching. In [Eickhoff, 2002] an approach
to reduce the initialization bias is proposed which is based on
Equation (1) and uses the MRIP scenario. Its performance
is examined and improved in [Bause and Eickhoff, 2002] and
[Bause and Eickhoff, 2003]. An application of this approach
is demonstrated in [Arns et al., 2003]. The results show that
this approach is more reliable than methods which are based
on Equation (2), especially if the transient behaviour is more
complicated. Unfortunately, its computing time is quite large,
possibly too excessive, as in many applications the computing
time is as important as accuracy.

In the next sections an algorithm is described, which is based
on Equation (1). In comparison to the algorithm described in
[Bause and Eickhoff, 2003], the required run time of the new
algorithm is substantially improved without reducing the ac-
curacy of the results. This is examined in a later section by
comparing the worst-case run time and the accuracy of both al-
gorithms. In this paper only sequential methods and algorithms
which are based on a dynamic set of data are considered. There-
fore, the output analysis is performed online and guides the sim-
ulation experiment until estimates are statistically accurate.

IMPROVED ALGORITHM

The basic idea of the algorithm is given by Equation (1). The
aim is to determine the first indexl from which on all following
probability distribution functions are (approximately) identical.
Obviously the time horizon of every simulation experiment is
limited. Therefore it is not possible to access ”all” successive
probability distribution functions. Accessible is only the ob-
served part of the steady state phase. It is strongly necessary that
this observed part of the steady state phase is reasonably large to
avoid the determination of a misleading truncation point. There-
fore the algorithm selects the size of the observed part of the
steady state as a (constant) factorr of the size of the transient
period, i.e. the size of the observed part of the steady state phase
is alwaysr-times larger than the so far selected transient phase.
During each step of the algorithm the indexl is increased by
one. To assure the proper ratio between the two phases during
each stepr + 1 new observation indices have to be accessed
and included in analysis. For details on the basic idea of this
approach see [Bause and Eickhoff, 2002]

Listing 1 shows a pseudo code of the improved algorithm,
where for convenience some special notation is used. Let the se-
quence{yij}p

i=1 be the order statistic of observations{xij}p
i=1.

Using the operators +, -, / and := in conjunction with sequences
(see lines 0, 5, 8, 10 and 15) means to use these operators on
each component of a given sequence separately. The operator
≈ in line 10 and 15 implements Equation (1) and is realized

by the Kolmogorov-Smirnov two-sample test (KS-test). If the
null hypothesis of equality is accepted, the operator≈ (resp.
the KS-test) resultstrue. The procedureobserve()collects one
observation of each replication and the procedureuniform(a,b)
delivers a uniform distributed integer random number between
a andb used as index. The variablel points atXl as the candi-
date for the truncation point, at the end of the algorithm it is the
valid truncation point. The variablen represents the number of
observations collected of each replication so far.

Listing 1: Pseudo code of the improved algorithm

0 i n t l := 0 ; i n t n := 0 ; i n t r := 10 ; {si}p
i=1 := 0 ;

bool NoTes tFa i l ed :=f a l s e ;
whi le (¬NoTes tFa i l ed ){

n := n + 1 ;
obse rve ({xin}p

i=1 ) ;
5 {si}p

i=1 := {si}p
i=1 + {yin}p

i=1 ;
i f ( 0 6= n mod (r + 1) ) con t inue ;
l := l + 1 ;
{si}p

i=1 := {si}p
i=1 − {yil}p

i=1 ;
NoTes tFa i l ed :=t rue ;

10 i f (¬({yil}p
i=1 ≈ {si}p

i=1/(n− l)) )
NoTes tFa i l ed :=f a l s e ;

f o r ( i n t k := 1 ; k ≤ r ; k := k + 1 ){
i f (¬NoTes tFa i l ed ) break ;
i n t u :=un i fo rm (lk + 1 ,l(k + 1) ) ;

15 i f (¬({yil}p
i=1 ≈ {yiu}p

i=1) )
NoTes tFa i l ed :=f a l s e ;

}
}

The most time consuming factor of the algorithm described
in [Bause and Eickhoff, 2003] is the increasing number of KS-
tests executed during each step of the algorithm. The improved
algorithm described in Listing 1 avoids these tests by using
the calculated sequence{si}p

i=1 which is an estimate ofF (x)
based on the latest observations during each step of the algo-
rithm. The sequence{si}p

i=1 is the sum of all order statistics
which are not part of the transient period. New observations
are added whereas observations of the transient period are sub-
tracted from{si}p

i=1 (see lines 5 and 8). Dividing each com-
ponent of{si}p

i=1 by the number of addends results in an esti-
mate ofF (x). This sequence is compared with the order statis-
tic of the actual test sample{xil}p

i=1 (see line 10). Because
{si}p

i=1 is calculated over observations at different model times,
a possible periodic behaviour could be overlooked and an un-
reliable estimate of the truncation point could be accepted (cf.
[Bause and Eickhoff, 2003]). Therefore additionalr randomly
chosen sequences are used to avoid this trap. The observed part
of the steady state phase is divided intor equally sized inter-
vals. Each interval contains one randomly chosen sequence. In
a loop all of these sequences are compared with the actual test
sample{xil}p

i=1 (see lines 12 to 17). If the assumption of equal-
ity is rejected by the KS-test for{si}p

i=1, or any of the randomly
chosen test samples, the truncation pointl is not adequate and
more steps of the algorithm have to be performed. In contrary
to the previous version of this algorithm, the number of needed
KS-tests in each step is maximumr + 1.

WORST CASE TIME COMPLEXITY

In [Bause and Eickhoff, 2003] it is demonstrated experimen-
tally, having considered a number of different kinds of transient



behaviour, that the previous version of the algorithm described
in Listing 1 is very accurate and has therefore a great advan-
tage over some other commonly used methods for truncation
point estimation. But the price for its accuracy is the length
of its run time which isO(n2p log(p)). This run time is pos-
sibly too large for practical implementations. In this section it
will be shown that the algorithm described in the previous sec-
tion is a substantial improvement, because its run time is only
O(np log(p)), without significant loss of accuracy, in conjunc-
tion with any kind of transient behaviour.

As before, letp denote the number of replications andn the
number of observations in each single replication. Note, that
at the end of the algorithmn is a multiple ofr + 1. The total
number of observations ispn. Assume, that all basic arithmetic
operations are inO(1) (cf. [Cormen et al., 1994]). In the fol-
lowing the running times of algorithms are considered from the
point of view of their worst-case time complexity.

Theorem
The worst case running time of the algorithm described in List-
ing 1 isO(np log(p)).

Proof: Only KS-tests with random samples of sizep are
performed. The basis of the KS-test are two sorted random
samples. Sorting can be done inO(p log(p)). To determine
the maximum distance in the compared samples a pointer has
to be shifted through each sorted random sample. This can
be done in2p steps which leads toO(p). To accept or re-
ject the null hypothesis, the determined maximum difference
has to be compared with a tabulated critical value. This can
be done inO(1). Therefore, the run time of one KS-test is
O(p log(p)) + O(p) + O(1) = O(p log(p)).

The run time of a single execution of lines 3 and 6 isO(1)
and of lines 4 and 5 it isO(p). Because the while-loop in line 2
is executedn times before the algorithm stops, the run time of
this part of the algorithm isO(np).

A single execution of lines 7, 9 and 11 can be done inO(1);
a single execution of line 8 can be done inO(p); to execute line
10 a run time ofO(p log(p)) is needed, because a KS-test has to
be performed. Because of the condition in line 6 this part of the
algorithm is executed onlyn

r+1 times. Therefore, the run time
of this part of the algorithm isn

r+1 ·O(p log(p)) which leads to
O(np log(p)) becauser is a constant parameter.

A single execution of lines 12, 13, 14 and 16 needs only a
minor run time ofO(1). The KS-test in line 15 can be done
in O(p log(p)). The for-loop is executed at maximumr times,
therefore, the run time of one complete for-loop in each step of
the algorithm isr · O(p log(p)). All in all n

r+1 for-loops have
to be performed. Therefore, the run time of this part of the
algorithm isn · r

r+1 ·O(p log(p)) which leads toO(np log(p)).

Combining all results, the run time of the algorithm is
O(np) + O(np log(p)) + O(np log(p)) = O(np log(p))

Becausep could be considered as a constant parameter and
usuallyp << n holds, the run time could be described byO(n).
This run time is linear and highly efficient, because each obser-
vation has to be processed at least once.

PERFORMANCE

To compare the accuracy of both versions of the algorithm the
same artificial processes as in [Bause and Eickhoff, 2003] are
used, except the starting condition of the ARMA process is
changed, to create a more unusual initial state. The output
data of these artificial processes is used to show the perfor-
mance of the algorithm on many different kinds of transient
behaviour. Let{εt}∞t=1 denote an independent Gaussian white
noise process (see [Hamilton, 1994]). In all experiments we
usedp = 100, r = 10 and anα-level of 0.05 for the critical
value of the KS-test. For details on this parameters the reader is
referred to [Bause and Eickhoff, 2002]. Further more, in all of
the performed experiments the pseudo random number genera-
tor described in [L’Ecuyer et al., 2002] is used. This generator
is suitable for many parallel replications, because its period is
reasonably large and can be divided into many substreams.

Process A: linear transient mean

Y
(A)
t =

{
εt + x− tx

l if t < l,

εt else.

with x = 10, l = 100. This process can be regarded as the
easiest case, because all performance measures are influenced
by the initial state and show a transient behaviour, especially the
mean and all quantiles. At a well defined indexl the influence
of the initial condition disappears completely.

Process B: linear transient variance

Y
(B)
t =

{
εt · (x− tx−1

l ) if t < l,

εt else

with x = 10, l = 100. The probability distribution function of
this process has a transient behaviour, which is not visible for
Equation (2) because the mean (resp. the median) is constant
right from the beginning. Therefore, in this case Equation (2)
is not suitable for an estimation of any other measure than the
mean.

Process C: exponential transient mean

Y
(C)
t = εt + x · e(t

ln(0.05)
l )

with x = 10, l = 100. In this case every performance measure
has a transient behaviour. However, the influence of the ini-
tial state is disappearing exponentially. When regarding a finite
simulation horizon, the influence never disappears completely.
The definition of this process implies that at indexl the impact
of the influence of the initial state is reduced to5% of its impact
at t = 0.

Process D: ARMA(5, 5)

Y
(D)
t = 1 + εt +

5∑
i=1

1
2i

(Y (D)
t−i + εt−i)



(a) Process E / previous algorithm (b) Process E / improved algorithm

(c) Process F / previous algorithm (d) Process F / improved algorithm

Figure 1: The number of rejections of the null hypothesis standardized by the number of all performed KS-tests. The values are plotted
over model time, each peak represents one step of the algorithms.

with Y
(D)
−5 = Y

(D)
−4 = Y

(D)
−3 = Y

(D)
−2 = Y

(D)
−1 = 100. Each

value of this process depends on the 5 previous values. There-
fore, the observations of this process are highly autocorrelated.
A theoretical investigation shows that the expected value of this
process in steady state isE[Y (D)

∞ ] = 32. The initial state has no
influence on this expected value.

Process E: periodic

Y
(E)
t = εt + b · sin(ωt)

with b = 1, T = 2π
ω = 50. The transient behaviour of this

process is governed by a sine oscillation and is not converging
to a steady state distribution at all. A possible pitfall concerning
output analysis of this process is that a batched mean seems to
converge, if the batch size is equal to the period of the oscilla-
tion.

Process F: non-ergodic

Y
(F )
t =

{
εt(ct + 1) + x− tx

l if t < l,

εt(ct + 1) else.

with x = 10, l = 100, c = 0.01. This process is governed by
two different transient behaviours. The first one is obvious and
is the same as in Process A. The second transient behaviour is
more hidden and results in a non-ergodic behaviour. The pit-
fall concerning output analysis of this process is to overlook the
second transient behaviour. This is especially likely when per-
forming a visual inspection.

The processes A to D converge towards a steady state distri-
bution. Therefore Equation (1) can be used to estimate the be-
ginning of the steady state phase. To obtain a statistically accu-
rate result simulation experiments with the algorithm described
in [Bause and Eickhoff, 2003] and the algorithm of Listing 1 are
performed 20 times. The average of all 20 results is listed in Ta-
ble 1 with the halfwidth of its confidence interval and its relative
statistical error.

using 20 runs previous algorithm improved algorithm

Process A 98.00± 0.43 (0.4%) 97.25± 0.57 (0.6%)
Process B 86.20± 1.01 (1.2%) 82.20± 1.87 (2.3%)
Process C 103.05± 1.76 (1.7%) 99.25± 1.81 (1.8%)
Process D 190.25± 6.53 (3.4%) 185.00± 6.55 (3.5%)

run time O(n2p log(p)) O(np log(p))

Table 1: The average truncation points and their confidence in-
tervals. Each result is based on 20 simulation experiments.



(a) Process E / Line 10: KS-tests with{si}p
i=1 (b) Process E / Line 15: KS-tests withr random samples

Figure 2: Standardized statistics produced by the KS-tests executed in line 10 an line 15 respectively (see Listing 1) when applied to
Process E. The null hypothesis is accepted when the standardized statistic is below1.

The halfwidths of the confidence intervals are in all our ex-
periments smaller than five percent of the mean value after
fewer than 20 simulation experiments. This shows that both al-
gorithms deliver a robust estimate with a small variance. Even
though the results of both algorithms are comparable, the al-
gorithm described in Listing 1 tends to estimate the truncation
point a bit earlier. This shows that the fewer KS-tests of this
algorithm are weaker than the large number of KS-tests in the
previous version of the algorithm, which cause the longer run
time.

The processes E and F do not converge towards a steady state
distribution, and so there is no steady state phase at all. There-
fore, both algorithms should not return a truncation point. To
check the accuracy in these cases each step of the algorithms
is observed by plotting the number of rejections of the null hy-
pothesis (see Figure 1). The rejections should be on a high level
so that Equation (1) will not be true for any tested value ofl. To
make the number of rejections comparable, they are standard-
ized by the number of all performed KS-tests. Therefore, the
value1 means that all KS-tests reject the null hypothesis, and
the value0 means that all KS-tests accept the null hypothesis.
To obtain results depicted in Figures 1(b), 1(d) and 2(b) the con-
dition in line 13 of Listing 1 is ignored, to force the execution
of all r + 1 KS-tests to obtain continuous plots.

The plots in Figure 1(a) and 1(c), with the results for the origi-
nal algorithm described in [Bause and Eickhoff, 2003] are quite
smooth, because a large number of KS-tests are used to check
Equation (1). Additionally these plots show that the KS-tests of
the previous algorithm work reliably, because of the large num-
ber of rejected null hypotheses when analyzing Process E and
F. Note, this algorithm gives an estimated length of the initial
transient phase if the number of rejections is below a certain
threshold, which is usually set at0.05. The plots in Figure 1(b)
and 1(d), for the modified algorithm, are not as smooth, because
the number of executed KS-tests is much smaller. However, the
number of rejections of the null hypothesis is high in both cases.
Note, that the improved algorithm accepts an estimate only if all
KS-test accept the null hypothesis. Therefore the improved al-
gorithm works in the case of on Process E and F as reliably as

the previous algorithm.
Furthermore, Process E is a good example to demonstrate that

a truncation point estimation exclusively based on{si}p
i=1 is not

sufficient. The statistics produced by the KS-test are plotted in
Figure 2. Figure 2(a) shows the results of the comparisons be-
tween{xil}p

i=1 and{si}p
i=1 performed in line 10 of Listing 1.

Figure 2(b) shows the maximum statistics of all KS-tests per-
formed in line 15 of Listing 1 during the for-loop. In the second
case, the maximum statistics of allr comparisons are plotted by
disregarding the condition from line 13. To achieve comparabil-
ity, the statistics are standardized by appropriate critical values
of the KS-test. A standardized statistic below1 means that the
corresponding null hypothesis was accepted by the KS-test.

Figure 2(a) shows a periodical pattern of acceptance of the
null hypothesis. The reason for this is, that{xil}p

i=1 is gov-
erned by the periodical behaviour of Process E. The situation is
different in the case of{si}p

i=1 since then many random sam-
ples of different model times are taken into account. Therefore,
{si}p

i=1 cannot reflect the periodical behaviour and represents
the average test sample over many periods of the sine oscilla-
tion. When Process E is at an extreme value of the sine os-
cillation, the KS-test detects the difference between{xil}p

i=1

and{si}p
i=1. If Process E is at a zero point of the sine oscilla-

tion, the KS-test is not able to recognize a difference between
{xil}p

i=1 and {si}p
i=1. These results in the same problem as

shown for the method of Welch (see [Bause and Eickhoff, 2003]
and [Welch, 1983]). However, the KS-tests with the randomly
selected samples make sure that the improved algorithm works
reliably (see Figure 2(b)).

TRANSIENT BEHAVIOUR OF THE M/M/1 QUEUE

In [Kelton and Law, 1985] it is pointed out that true steady state
behaviour of a M/M/1 queueing system is very difficult to ob-
serve by simulation experiments. The reason is that the depen-
dence of the output data on the initial state can last very long. In
[Jain, 1991] the most important properties of an M/M/1 queue
are summarized. Only the mean arrival rateλ and the service
rateµ is necessary to analyze the steady state behaviour of the



(a) traffic intensityρ = 0.5

(b) traffic intensityρ = 0.8

(c) traffic intensityρ = 0.9

Figure 3: The estimated truncation points in response time anal-
ysis obtained according to Listing 1 and Condition (3).

M/M/1 queue. The traffic intensity is given byρ = λ
µ . The

stability condition isρ < 1. Let N denote the number of jobs
in the system in steady state, in queue and in service. If the sta-
bility condition holds, the mean number of jobs in the system
in steady state isE[N ] = ρ

1−ρ . Let D denote the response time
(or turnaround time) of the system in steady state, including the
time in queue and in service. Then, the mean response time in
steady state is given byE[D] = E[N ]/λ. Let Dij denote the

response time of thejth job leaving the system in theith repli-
cation. When using the MRIP scenario, the mean response time
of thejth job,E[Dj ], can be estimated by

D̄j(p) =
1
p

p∑
i=1

Dij .

The aim of the experiments reported here is to assess the re-
sults produced by the algorithm described in Listing 1 when
analyzing the M/M/1 queue. A comparison with the previously
published results of [Kelton and Law, 1985] is done. The au-
thors of that publication used the same condition as a measure of
convergence to steady state, as [Gafarian et al., 1978]. Namely:

|D̄j(p)− E[D]| ≤ ε · E[D] (3)

When analyzing the response timeD, j should not be smaller
than the initial number of jobs in the system. However, it should
be the minimum index for which this condition holds. This con-
dition is based on the estimated mean valuesD̄j(p) and, there-
fore, implements Equation (2). Further more, this condition is
only applicable, if the expected steady state value ofE[D] is
known. Therefore, this rule has only theoretical importance and
cannot be applied in practise.

The primary aim in [Kelton and Law, 1985] was to use that
condition to assess the rate of convergence of the mean waiting
time in the queue in different queueing models to steady state.
Because of this, the results of the algorithm described in Listing
1 are not expected to be the same as those of Kelton and Law.

In all our experiments we setλ = 1 so thatE[D] = E[N ]
holds. The series of experiments are done for estimating the
truncation point of the M/M/1 queue with a constant traffic
intensity of ρ = {0.5; 0.8; 0.9} and an initial queue lengths
between0 and 30. In this experiments we set the parameter
r = 1000. This leads to a large ratio between the length of
the transient phase and the observed part of the steady state
phase when executing the modified truncation point detection
algorithm. For each initial value of the queue length the exper-
iment is repeated 100 times to estimate the average truncation
point and its confidence interval. In parallel to the algorithm de-
scribed in Listing 1, Condition (3) is being checked on the same
set of output data. We setε = 0.05 for all experiments. The
analyzed measure is the response time.

The results are plotted in Figure 3 forρ = {0.5; 0.8; 0.9}.
The shapes of the curves obtained under Condition (3) are sim-
ilar to those obtained for the improved truncation algorithm. In
all cases they start on a higher level and drop down at the point,
where the initial queue length is (approximately) equal toE[N ]
resp.E[D]. After this point all curves rise again. This shows,
that the results of the improved algorithm conform the theory.

The convergence of the mean is a necessary condition for a
process being in the steady state phase. Therefore, a truncation
point chosen on the basis of the converging probability distri-
bution is expected to be equal or larger than a truncation point
chosen on the basis of the converging mean. However, in the
implementation of Equation (1) and Condition (3) two different
measures of convergence have been used, so the results are not
directly comparable. One can see that the estimated value of
the truncation point depends not only on the convergence of the
observed measure, but also the measure of closeness which in



Condition (3) is represented by a scalar valueε, while in the im-
plementation of Equation (1) the statistic of the KS-test is used.

The experiments with this M/M/1 queue show that the re-
sults of the algorithm described in Listing 1 conform to theory
and are comparable to the results of [Kelton and Law, 1985].
In contrast to the previously published results, all simulation
experiments were performed automatically without any a pri-
ori knowledge about the steady state distribution or steady state
mean values. Note, that the large number of experiments at high
traffic intensities is only feasible because of the efficient running
time of the improved algorithm.

LIMITS AND REJECTED IDEAS

Because Equation (1) uses an approximation the estimate of
the beginning of the steady state phase of Process A is always
smaller than the theoretically best value which is in this example
l = 100. However, using the equality instead of an approxima-
tion does not make sense in output processes such as Process C.
Using the equality instead of an approximation would lead to
an infinite value forl, because in Process C the influence of the
initial state disappears exponentially.

Figure 4: Truncation point analysis of Process A. The quality of
estimates depends on the number of parallel replications.

Figure 4 depicts the results of simulation experiments for the
Process A executed with different numbers of parallel replica-
tions. These experiments were executed as described in previ-
ous sections, with 20 independent simulation experiments for
each plotted point. These results validate the assertion, that the
estimated length of the initial transient phase is always smaller
than its theoretically best value. Furthermore, another effect
can be observed. The values of the estimates decrease with de-
creasing numbers of parallel replications. Note, that the crit-
ical values of the KS-test are defined for very small sample
sizes, too. The realization of the approximation of Equation (1)
based on the KS-test gets weaker for smaller numbers of paral-
lel replications. Therefore, we recommend at least 30 parallel
replications, and if possible more than 50 parallel replications
should be used. This limit is valid for the algorithms described
in [Bause and Eickhoff, 2003] and in Listing 1.

Before investigating the performance of the algorithm de-
scribed in Listing 1, it was uncertain, whether the obtained re-
sults would be accurate or not. Therefore, it was an additional
idea to perform a large number of KS-tests, as it is done in the
previous version of the algorithm, whenever ther+1 KS-tests of
the new version of the algorithm do not recognize a difference.
This idea has been rejected because of two reasons. Firstly, the
results obtained for both versions of the algorithm are convinc-
ingly close, see Table 1. Another reason for the rejection of
that idea was, that the worst case time complexity would still be
O(n2p log(p)). In the worst case, ther + 1 KS-tests of the new
version of the algorithm would always accept the null hypoth-
esis and the large number of KS-tests of the previous version
of the algorithm would always reject the null hypothesis. In this
situation the worst case run time of the algorithm would be even
worse than in the previous version.

CONCLUSIONS

We introduced an efficient algorithm for the estimation of the
length of the initial transient phase in the sense of probability
distribution; see Equation (1). The worst case time complex-
ity of this algorithm is limited byO(np log(p)) and is, there-
fore, substantially faster than the previous version of the algo-
rithm (see [Bause and Eickhoff, 2003]). This improvement is
achieved without reducing the accuracy of the estimates. Its
performance has been experimentally assessed by conducting a
number of simulations of artificial output processes with a vari-
ety of different types of transient behaviour.

We also investigated the newly introduced algorithm in
M/M/1 queue simulation and compared them with previous re-
sults published in [Kelton and Law, 1985]. The results are as
expected and conform to theory.

In the introduction it is pointed out that a truncation point es-
timation based on Equation (1) can be used for many different
performance measures, such as mean values, variances, quan-
tiles or even rare-events. Equation (2) is in general only useful
in mean value analysis.

However, limits concerning Equation (1) are also discussed.
For Process A is demonstrated that this equation does not al-
ways leads to the theoretically best truncation point. This is
caused by the approximation used. Using the equality instead
of an approximation is no alternative, because this would lead
in some cases (e.g. Process C) to an infinite truncation point.
Equation (1) can be used to reduce the initialization bias dra-
matically, but it cannot be used to eliminate it completely.
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