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ABSTRACT

In steady-state simulation the output data of the transient

phase often causes a bias in the estimation of the steady-

state results. A common advice is to cut off this transient
phase. Finding an appropriate truncation point is a well-
known problem and is still not completely solved. In this

paper we consider two algorithms for the determination of
the truncation point. Both are based on a technique which

determine this distribution or derived measures. In prac-
tice, the calculation ofF (x) is only possible for special
cases, because the output process might never reach steady-
state in finite time. By eliminating the transient phase, the
steady-state distribution or derived measures are estimated
on the basis of the observatioxsi, .. ., Xn, hopefully giv-

ing results close to the theoretical steady-state distribution.
In the following we will call the observationg 1, ..., X

the steady-state phase. In the literature the steady-state

takes the definition of the steady-state phase more closely phase is, e.g., defined by the remark "relatively free of

into consideration. The capabilities of the algorithms are
demonstrated by comparisons with two methods most often
used in practice.

1 INTRODUCTION

The output proces$X;}!_; of a discrete-event simulator

is influenced by the initial stat§(0) chosen by the analyst.

In general this influence is significant in the beginning and
decreases with increasing model time. If one is interested
in the steady-state behavior of the model, this initialization
bias is obviously undesirable. A common way to reduce
the influence ofS(0) is to truncate the “most” influenced
observationo, ..., X|_1.

Following this strategy the problem is to find an appro-
priate truncation point Many detection rules and methods
can be found in the literature. Some are based on one
simulation run (see (Pawlikowski 1990)) and some employ
many independent simulation runs starting with the same
initial state (cf. (Fishman 2001, Welch 1983)). The latter
approach is called multiple (independent) replications in
parallel (MRIP, see (Ewing, Pawlikowski, and McNickle
1999)) and will be considered in this paper.

Let Fj(x|S(0)) := Pr{X; < x|S(0)] denote the cumu-
lative distribution function (CDF) at model time indgx
Assuming an ergodic system we havg(x|S(0)) — F(x)
if | > oco. F(X) is called the steady-state distribution
and the primary concern of steady-state simulation is to
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the influence of initial conditions" (Fishman 2001) or by
the remarkX 11, Xi42, ... Xn "will have approximately the
same distribution" (Law and Kelton 2000). These defini-
tions are not precise enough for an algorithmic detection
of the truncation point and the practical knowledge of
the analyst is still very important. It is therefore not much
surprising, that the most common methods for detection of
the truncation point are based on a visual inspection of the
output data. Other, completely algorithmic methods give
only proper results under special conditions (see (Gafarian,
Ancker, and Morisaku 1978)) and are mostly based on one
long simulation run. Nearly all methods use as a criterion
convergence of the mean, although the steady-state phase
is defined by the convergence &f (x|S(0)) towards the
steady-state distributioR (x).

In this paper we focus on the output analysis of MRIP.
One main advantage &f independent replications is, that
it is possible to gek random values ofFj (x|S(0)) and
thus an estimation of the CDF & (x| S(0)). The accuracy
of this estimation increases with an increasing number of
replications. A significant advantage of MRIP is that the
execution ok replications in parallel needs about the same
amount of time than one single simulation run (provided
we use, e.g.k computers), but gives more data for a better
estimation offj (x| S(0)). Since the prices of hardware are
decreasing and performance is increasing, the execution of
MRIP becomes a feasible method in practice.
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Figure 1: PDF Over Time: Abscissa Represents Index of
Model Time; Ordinate Shows Range ¥fDivided Into
Equally Spaced Y-intervals (A Dark Gray Point at Interval
v Represents a High Probability ofi[ € v], while a Light
Gray Represents a Low Probability)

2 MULTIPLE REPLICATIONS IN PARALLEL

Let Ifj (x| S(0)) denote the empirical CDF of the values
from the independent replicationst,- (X|S(0)) is an esti-
mation of Fj(x|S(0)) and, of course, the accuracy of this
estimation increases with increasikgLet x; j denote the
jth observation of théth replication with 1< i < k and
1< j <n. Ifall x;j are observations of the same measure
and allxyj, ..., Xk j are observed at the same model time
or event, than the sequenoe | }I _q1 canbe conS|dered as an
independent random sample ¥f. Let X; = le Xij
denote the column average.

2.1 Method of Fishman

It is the nature of simulation that all estimated measures
have a random error. In addition, measures might have
a systematic error caused by the transient phase.
systematic error is known as the initialization bias and

2.2 Method of Welch

The method of Welch extends the method of Fishman. It
is based on the following experiences. The random error
appears as a high-frequency oscillation in the sequence of
column averages whereas the systematic error is in most
cases a low-frequency oscillation. A sliding window com-
prising a sequence of column averages might be able to
reduce the effect of the random error. Given a particular
window size we can define an overall average from these
column averages. Since the window is moving this average
is called the moving average and sliding of the window
results in a sequence of such moving averages. In practice,
this sequence often seems to converge after some point
giving the wanted truncation point. For details see (Law
and Kelton 2000, Welch 1983).

1. Compute{XJ}'J‘ 1-

2. Move awindow of sizev = 2K +1 acrosé,x,}
Calculate and plot the average of the mterval in
each single step. In order to avoid conflicts at
the beginning, one starts with a window of size 1
(K = 0), which is increased until the desired size
w is reached. After that, the window size is kept
constant.

As long as the plot is not smooth, increase the
window size by some value > 0 and repeat step
2 with w := 2(K 4+ v) + 1.

As mentioned, the methods of Fishman and Welch
require interaction of an experienced user. In the following
we introduce two algorithms which need less user interaction.
In practice, different situations might be encountered. On
the one hand, one might has to deal with a static set of data,
e.g., if the simulation has been terminated. On the other
hand, one might be confronted with a dynamic set of data.
E.g., if analysis of the output data is performed on-the-fly,
additional data will become available during the simulation
experiment. The following two algorithms take these two
possible scenarios into account. One algorithm deals with
a static set of data, the other deals with a dynamic set of
data. Both aim at the detection of the truncation pbemd
are based on convergence characteristics of the empirical
CDF of the random samples of;.

This3 STATIC DATASET

Fishman’s advice to detect i, is to examine the sequence of ASSume thaFn (x| S(0)) is the latest estimation of the steady-

column averagesX; }”_1 (cf. (Fishman 2001)). Increasing
the number of repllcatlonk decreases the random error,
but the systematic error remains unaffected.
1. Compute and plop‘(j}?:l.
2. If the graph does not show a suitable “warm-up
interval”, increasen and goto step 1.
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state distributionF (x), because the simulation terminated
at model time index. In order to find a proper truncation
point, the first model time inddxmust be detected such that
Ifj (X|S(0)) ~ Fn(x|S(0)) for all j > 1. One measure for
equality of two random variables is the maximum difference
of their empirical CDFs. The maximum difference of two
CDFs X1 and Xz is given by max |F1(x) — F2(x)| where

Fi (x) is the proportion ofX; values less than or equal o
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Figure 2: Plots of a Linear Transient Phayél()

Given two empirical CDFs by two samples, the maximum

The decision whether to terminate or to continue the simu-
lations can be based on specific analysis results. Thus the
set of data is now not limited a priori and its size varies
dynamically with proceeding execution of the simulations.

4.1 Algorithm for a Dynamic Dataset (ADD)

1. Choose aratio 1r, and a levelp,0 < p < 1.

Initialize n := 0
2. Observe + 1 new X-intervals of all replications
and compute the + 1 new random samples:
{Xi,n+1}=(:1, ce {Xi,n+r+1}=(:1
Setn:=n+(r +1)

SetTS:= {xi,%}ik=l
5. Compardl Swith {x; j}}_; for j = -0 +1,....n
using the Kolmogoroff-Smirnov two-sample test.
If more than(p * 100% of the compared random
samples(x; j }}‘:1 have a different probability dis-
tribution thanT S goto 2.
Otherwise terminate with := 1.

In (Bause and Eickhoff 2002) this algorithm for a
dynamic dataset (ADD) was first introduced. Similar to
ASD, this algorithm is based on the maximum difference
of the empirical CDFs. ADD divides the observed random
samplesinto three parts. The first part comprises the random

Pw

difference can be determined by sorting these samples andsamples, which have been assigned to the transient phase.

comparing indices of corresponding X-values. All this gives
the following algorithm.

3.1 Algorithm for a Static Dataset (ASD)

1. CalculateFj(x|S(0)) for 1 < j < n by sorting

i, 1.

2. Compute the maximum difference{slj}?;i of

Fj (x|S(0)) and Fn(x|S(0)).

3. Computeforalfj with1 < j < n—1the number of
differences which miss the threshold in the interval
[j.n—1.

Choosé to be the minimum value of after which
only (a*100)% of thedj, dj41, ..., dh_1 exceed
the thresholdz k. 1—q-

The thresholdz; k.1—+ iS the same threshold used in
the Kolmogoroff-Smirnov two-sample test. Values of the
threshold are tabulated. For details see (Hartung, Elpelt,
and Klgsener 1985). In our experiments we used-devel
of 0.05 and seta = 0.02.

4 DYNAMIC DATASET

Analysis of the output data parallel to the execution of the

numerous simulations in the MRIP approach has some ad-

The second part is the random sample, denoted as the test-
sampleT S which is tested whether it is a proper estimation
forl. Finally, the third part are those random samples, which
are assumed to be in the steady-state phase. This last part
might be used to estimate(x). Note thatn is not bounded

and therefore the algorithm need not terminate, which, e.g.,
might happen in case of a non-stationary model.

Since the analysis can be performed in parallel to the
simulation, the algorithm might be employed to determine
a suitable stopping criteria for the simulation (cf. (Bause
and Eickhoff 2002)). One key property of ADD is, that it
preserves a predefined ratio of L between the transient
and the steady-state phase, following an advice of Law and
Kelton (Law and Kelton 2000). Surely, a proper choice
of r depends on the model. Our experiences show, that
r =10 is a proper choice for many datasets and we used
this choice in the following experiments.

Testing whether two random samples originate from the
same distribution is again performed using the Kolmogoroff-
Smirnov two-sample test. Selecting this test seems reason-
able, since it makes no assumptions on the distribution of
the Xj. When using ADD we selected artlevel of 0.05
and also sep to 0.05.

5 EXPERIMENTAL COMPARISON

vantages. Most important is that the analysis process has As mentioned, it is well-known that a proper estimation of

the opportunity to guide the execution of the replications.
416

the truncation point has a significant impact on the quality of
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Figure 3: Plots for a Constant Mean with a Transient
Variance {?) - ASD Givesl = 87 and ADDI = 91

the simulation results (cf. (Fishman 2001, Law and Kelton
2000, Welch 1983)). Gafarian, Ancker and Morisaku define
guality in more detail by attributes like accuracy, precision
and generality (see (Gafarian, Ancker, and Morisaku 1978)).
Here we want to deal with the quality in a more general
view and test ASD, ADD and the methods of Fishman
and Welch on some typical attributes of the output data of
common models.

In the following examples we use output data, that is
not taken from simulations of "real" models. Instead we
employ some well-known artificial processes with known
properties. Especially characteristics of the truncation point
are known in advance giving a precise criterion for com-
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Figure 4. Plots of an Exponential Transient Phase
(Y{*) — ASD Givesl = 149 and ADDI = 115

ft(l) is defined such that the transient phase ends at index
| andY® is the white noise process beyond indexThe
parametex describes the offset.

Figures 2(a)- 2(d) show results obtained from applying
the methods of Fishman and Welch, ASD and ADD for
x =10 andl = 100. As depicted, all methods give a good
estimation off.

In Fig. 2(c) a cross represents the percentage afall
with j < h < n — 1, which exceed the threshoi \.1_,.

In Fig. 2(d) a cross represents the normalized result of all
performed Kolmogoroff-Smirnov two-sample tests at one
step of the ADD. Normalization is done with respect to all
tests, i.e. the normalized number of rejections of the null

parison. We used the random number generator describedhypothesisis plotted. At abotit= | we find the first random

in (UEcuyer, Simard, Chen, and Kelton 2002) and some
additional transformations, described below.

Let{et};2, denote an independent Gaussian white noise
process (Hamilton 1994). This process is transformed into
six processes with different attributes. In the following we
employk = 100 independent replications for each process.

5.1 Linear Transient Mean

The first inspected dataset (see Fig. 1(a)) is a realization of
the process
AR Ay (1)

A transient phase originates frorﬁl) which is defined as

D = :

x—tll if t <,
0 else.

(2)
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sample being (approximately) equal to all remaining random
samples. Obviously, due to randomness some “outlier” test
samples still show differences, but the algorithm determines
the truncation point accurately neiag= 100.

5.2 Linear Transient Variance

The second considered process (see Fig. 1(b)) has a constant
mean, but there is a transient behavior of the variance.

Y2 =1? « (3)
—tX=L ift <l

@ _ Xt : 4

t 1 else. “)

Multiplication in equation (3) stretches the y-range of the
white noise process. Agairi,(z) describes a linear transient
behavior k = 10,1 = 100).
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cation Point

The large variance has an influence on the column aver-
ages. Since the random error is larger at the beginning, also ference between the first random sample and the steady-state
the column average has a larger variance at the beginning distribution.
(see Fig. 3(a)). But with an increasing number of repli- In this example there is obviously no clear defined
cations, the random error decreases. The moving averagetruncation point, but this represents a typical situation en-
smoothes the column averages. The random error is coveredcountered in practice. Since the influence of the initial state
with increasing window size. In this example the method is not disappearing completely, it is difficult to estimate
of Welch is not able to discover the end of the transient the truncation point visually (see Fig. 4(a) and 4(b)). A
phase correctly (see Fig. 3(b)), because the standard hint todecision where to define the truncation point now depends
enlarge the window size leads to a smoothed curve without very much on experience of the analyst.
any slope. Figures 4(c) and 4(d) show the results for ASD and
Figs. 3(c) and 3(d) show, that ASD and the ADD are ADD. Both algorithms give a truncation point in the interval
able to find an appropriate truncation point, because they [100 150]. Their advantage is the automatic determination
are based on the empirical CDFs. The run of the curves in of the truncation point due to statistical assumptions.
both plots show a sharp drop near the “theoretically best”
truncation point. 5.4 ARMA(5,5)

5.3 Exponential Transient Mean The fourth dataset (see Fig. 1(d)) is created by multiple
realizations of the ARMAD, 5) process which is defined
Our third example considers a dataset (cf. Fig. 1(c)) being by

realizations of the process 5

1
YW =1+ea+) o i Fei), t=0. (7)

YO = 1O t e ®) i=1

In contrast to the first dataset exhibiting a linear transient \We selected(fg, Yﬂ), Yfg, Yg) =0, Y£41) — 100 as start-

p_hase, the_ addend now has an impact which is exponentially ing conditions giving a transient behavior, siriEeYt(“)) _
disappearing 32 fort — oo.

The results are shownin Fig. 5. The methods of Fishman
and Welch give no clear indication of a proper truncation
The definition of 2 results in permanent differences be- pomg. Theoretically the sample &t= 183 differs at most
tween two consecutive random samples, but beyond time PY 5% from the steady-state distribution. Also ASD gives
index| (againx = 10,1 = 100) a test sample will differ no proper truncation point. The reason is that the sample at

from the steady-state distribution at most by 5% of the dif- ¢ = 900 (i-e. Fn(x|S(0))) is an outlier and thus ASD gives
a cautious estimation of the truncation point. The analyst

would probably reject ASD’s choice and thus avoids running

In(0.05
1 =x. ™), (6)
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Not surprisingly, the results of ADD are the best. ADD Y® = £O¢ + £ (10)
determines a truncation point bt= 288. Beyond index ]
there are some peaks, e.g.tat 300 andt ~ 350— 400. with
These peaks result from the memory of the AR345) ft(6) —ct. (11)

process. In comparison to the outliers seen before (e.g.
in Fig. 2(d)), which are limited to a single point in time, £V again results in a process with a typical initial transient
an outlier of an ARMAS, 5)-process is reproduced in the  pepavior, but due tof® the process will not become
following 5 values. Thus, many outliers occurring close  grgodic afterwards. We used the following parameters for
together will give a curve shown in Fig. 5(d). experimentsc = 0.01, x = 10, | = 100.

Not surprisingly, the methods of Fishman and Welch
fail detecting non-ergodicity, see Fig. 7. ASD outputs a

o ) ) ) truncation point att = 231, but again this is a cautious
A periodic process (see Fig. 1(e)) is non-stationary and has cpgice and the analyst will probably refuse to analyze the

no steqdy-sta}te distribution. This implies that there is N0 o5, itant short “steady-state phase”. In comparison to the
truncation point. other methods ADD gives a definite result and is able to
Yt(5> _ ft<5> te ®) show that there is no truncation point.

5.5 Periodic

6 COMPARISON OF RUNNING TIMES

2 =b - sin(wt) 9)
It is well-known that the amount of data collected during
a simulation might become very large. In the previous
section we pointed out the potential benefits of the proposed
algorithms, ASD and ADD. In this section we consider the
price one has to pay for better results and determine the
worst-case time complexity of all the methods considered
in this paper.

As before, lek denote the number of replications amd

Equation (9) defines a periodic process using a sine oscil-
lation with amplitudeb and cycle lengthl = 2.

Of course, the column averages give also a sine oscil-
lation (cf. Fig. 6(a), herdd = 1, T = 50). The method
of Welch aims at smoothing the column averages with the
advice to increase the window size whenever the resul-
tant curve is not smooth. So there is some chance that
the analyst will select (after some expgnments on initially, the amount of observations of each single replication. So the
maybe, smalle_r data _sets) a \.deov_v size close to the cycle total number of observations k. Assume, that all basic
length. Selecting e_lwmdow size which conformg to the cy- arithmetic operations are i@(1) (cf. (Cormen, Leiserson,
cle length, results in a smooth curve of the moving average and Rivest 1994)). In the following the mentioned running

(cf.' F|g. 6(b)). Based on such a curve, Fhe an_alyst would times consider worst-case time complexity.
be inclined to select an incorrect truncation point.
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Theorem 1
man isO(nk).
Proof: One column average can be calculate®i¢k)
steps. Altogethen column averages have to be calculated

giving a running time ofO(nk). ]
Theorem 2 The running time of Welch’s method is
O(nk).
Proof. Since the method of Welch is based onthe results
of the method of Fishman, it needs a running tim&aghk)
and some additional time in order to calculate the moving

The running time of the method of Fish-

The only maximum of (12) subjecttodr <n—1is at
r = M giving at most3 (1 + n)? comparisons.

Altogether the running time of ADD is given by the
number of comparisons multiplied by the running time of
one comparison, which results in a total running time of
O(n%k log(k)). [ ]

Allworst-case running times can be limited by a polyno-
mial and are thus “theoretically efficient”. Not surprisingly
(having in mind the results from the previous section), the
methods of Fishman and Welch are the fastest. But ASD is

average. The window slides through the observations in at not significantly slower, since in practice>> k holds for
mostn steps. Since each value of the moving average can be most cases, so that the factor {(kp does not increase the
calculated by adding one new observation, subtracting the running time significantly. ADD needs the most steps (ad-

oldest observation and finally dividing by the window size,
we have an additional overhead ©f1). Thus the moving
averages can be calculated@n) steps and the resultant
running time of Welch’s method is therefa@gnk)+O(n) =

O(nk). |
Theorem 3 The running time of ASD s
O(nklog(k)).
Proof: Determination of the maximum difference

of two CDFs from two random samples of sikehas a
running time ofO(klog(k)), because the random samples
have to be sorted. Thus sorting allfandom samples needs
O(nklog(k)) steps.

The maximum difference of two CDFs (both given by
sorted random samples) takds feps. Since we do — 1
random sample comparisons, additior@{nk) steps are
necessary.

The threshold is tabulated and a lookup is don®ii)
steps. In order to determine the number of differences for
all intervals[j,n—1] (1 < j < n—1) having missed the
threshold, we have to inspect eahonce. Traversing this
range in reverse order, starting wijh=n — 1, gives the
opportunity to rely on previous results. So the amount of

ditional factornlog(k)), but the algorithm can be executed
parallel to the execution of all replications (cf. (Bause and
Eickhoff 2002)) giving a moderate overhead in practice.

7 SUMMARY AND CONCLUSIONS

The method of Fishman (Fishman 2001) smoothes the simu-
lation data by calculating the mean at each time index. This
method is easy to implement and therefore very popular. It
creates expressive plots for simple transient behavior (cf.
Fig. 2(a), 4(a) and 6(a)). But analysis of the steady-state
phase just on the basis of the mean might lead to problems.
As Welch remarked (cf. (Welch 1983)), convergence of
the mean is a necessary, but not a sufficient condition for
stationarity. Therefore, this method is not suitable for the
analysis of complex transient behavior. In such cases, it is
advisable to compare the results with a plot of the original
data (cf. Figs. 1(b) and 3(a)).

The method of Welch (cf. (Welch 1983)) is based on
the column average, too. It has the same advantages as
the method of Fishman, but suffers also from the same
disadvantages. The extension is, that the column averages

differences, which missed the threshold, can be calculated are smoothed, again by calculating the means of the sliding

in O(1) per interval. Because there are- 1 intervals this
takes additionaD(n) steps.

Altogether this gives a running time @ (nklog(k)) +
O(nk) + O(n) + O(1) = O(nklog(k)). |

Theorem4  The running time of ADD is
O(n%klog(k)).
Proof: As mentioned, the difference of the CDFs of

two random samples can be calculatedick log(k)). The
lookup of the threshold take®(1), so one Kolmogoroff-
Smirnov two-sample test has a running timeQxk log(k)).

In the pth step of the algorithnpr comparisons have to
be done inrJrLl steps. Therefore the amount of comparisons
is given by

n

2

p=1

n

p:r%(” +D _rm’+r’ntrm
2

2244 +2

(12)
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window. This gives a better distinction between the random
and the systematic error. But smoothing might lead to
inaccurate results: The moving average is calculated from
the means at different points in time and, in general, the
process changes over time. E.g., smoothness of the kink
in Fig. 2(b) depends on the window size. A more serious
problem occurs, e.g., when analyzing periodic processes,
especially if the window size conforms to the cycle length
(cf. Fig. 6(b)).

ASD and ADD solve some problems of the methods of
Fishman and Welch, because they are based on the CDFs
and not only on the mean. Thus they take the definition of
steady-state better into account.

Even though the implementations of ASD and ADD are
not difficult, they are more complicated than the methods
of Fishman and Welch. Their execution is more costly, too.
But this pays off, when analyzing real-world models with
a complex transient behavior.
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Table 1: Comparison of Example Results (No Problems:
+; Minor Problems:o; Method Fails: —)

| Process || Fishman] Welch [ ASD [ ADD |
Yt(l) (=100 +i~100 | td~100 | t =95 | + (=99
Yt(z) (=100 050100 | —d~10 | tqa=87 | + (=9
Yt(3) (I ~ 100 O [100,200] 0 (100200 | + (=149 | + (=115
Yt(4) ( ~183 O [150,400 | O [150400 | — (=428 | O (=289
Yt(s) (o 1y + — (~25 o (=498 | +
Yt(e) (o 1y —(~100 | —d~100 | O (=23 | +

| runtime [ nk | nk | nklog(k) | n®klog(k)]

Table 1 summarizes the results from our experiments.
The methods of Fishman and Welch are very useful when
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